論文の概要: Physics-Aware Neural Networks for Boundary Layer Linear Problems
- arxiv url: http://arxiv.org/abs/2208.12559v1
- Date: Fri, 15 Jul 2022 21:15:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-04 22:43:37.220787
- Title: Physics-Aware Neural Networks for Boundary Layer Linear Problems
- Title(参考訳): 境界層線形問題に対する物理対応ニューラルネットワーク
- Authors: Antonio Tadeu Azevedo Gomes and Larissa Miguez da Silva and Frederic
Valentin
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、一般偏微分方程式(PDE)の解をニューラルネットワークの損失/コストの観点から何らかの形で加算することによって近似する。
本稿では,1つ以上の境界層が存在する線形PDEに対するPINNについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Networks (PINNs) are machine learning tools that
approximate the solution of general partial differential equations (PDEs) by
adding them in some form as terms of the loss/cost function of a Neural
Network. Most pieces of work in the area of PINNs tackle non-linear PDEs.
Nevertheless, many interesting problems involving linear PDEs may benefit from
PINNs; these include parametric studies, multi-query problems, and parabolic
(transient) PDEs. The purpose of this paper is to explore PINNs for linear PDEs
whose solutions may present one or more boundary layers. More specifically, we
analyze the steady-state reaction-advection-diffusion equation in regimes in
which the diffusive coefficient is small in comparison with the reactive or
advective coefficients. We show that adding information about these
coefficients as predictor variables in a PINN results in better prediction
models than in a PINN that only uses spatial information as predictor
variables. This finding may be instrumental in multiscale problems where the
coefficients of the PDEs present high variability in small spatiotemporal
regions of the domain, and therefore PINNs may be employed together with domain
decomposition techniques to efficiently approximate the PDEs locally at each
partition of the spatiotemporal domain, without resorting to different learned
PINN models at each of these partitions.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(英: Physics-Informed Neural Networks、PINN)とは、一般偏微分方程式(PDE)の解をニューラルネットワークの損失/コスト関数として何らかの形で加算することで近似する機械学習ツールである。
PINNの領域におけるほとんどの作業は非線形PDEに取り組む。
それでも、線形PDEを含む多くの興味深い問題は、パラメトリック研究、マルチクエリ問題、パラボリック(過渡)PDEなど、PINNの恩恵を受ける可能性がある。
本研究の目的は,1つ以上の境界層が存在する線形PDEに対するPINNを探索することである。
具体的には,反応係数や随伴係数と比較して拡散係数が小さい場合の定常反応-随伴拡散方程式を解析した。
本研究では,これらの係数を予測変数として追加することで,空間情報のみを予測変数として使用するPINNよりも優れた予測モデルが得られることを示す。
この発見は、ドメインの小さな時空間領域においてPDEの係数が高い変動性を示すマルチスケール問題において有効であり、したがって、PINNはドメイン分解技術と共に、各時空間領域の分割において異なる学習されたPINNモデルに頼ることなく、PDEを局所的に近似するために用いられる。
関連論文リスト
- Functional Tensor Decompositions for Physics-Informed Neural Networks [8.66932181641177]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の近似において連続的かつ増加する公約を示した。
本稿では,古典変数分離法を一般化したPINNバージョンを提案する。
提案手法は,複雑な高次元PDEの性能向上により,PINNの性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-08-23T14:24:43Z) - Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks [17.69666422395703]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法において効率的であることが示されている。
本稿では,物理インフォームド畳み込みニューラルネットワーク(PICNN)の厳密な解析を行い,球面上のPDEを解く。
論文 参考訳(メタデータ) (2023-08-18T14:58:23Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Spectrally Adapted Physics-Informed Neural Networks for Solving
Unbounded Domain Problems [0.0]
本研究では, (i) 物理インフォームドニューラルネットワーク (PINN) と (ii) 適応スペクトル法という2種類の数値手法を組み合わせる。
物理インフォームドニューラルネットワークによる高次数値スキームの実装により,PDEの解法を効率的に行うことができる。
次に,最近導入されたスペクトル手法の適応手法をPINNベースのPDEソルバに組み込んで,標準PINNで効率よく近似できない非有界領域問題の数値解を求める方法を示す。
論文 参考訳(メタデータ) (2022-02-06T05:25:22Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Error analysis for physics informed neural networks (PINNs)
approximating Kolmogorov PDEs [0.0]
PINNによる大規模な放物型PDEの解の近似における誤差の厳密な境界を導出する。
PINN残差(一般化誤差)を所望の程度小さくできるニューラルネットワークを構築する。
これらの結果から,Kolmogorov PDEの近似におけるPINNの総合的誤差解析が可能となった。
論文 参考訳(メタデータ) (2021-06-28T08:37:56Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。