論文の概要: Learning High-Dimensional Differential Graphs From Multi-Attribute Data
- arxiv url: http://arxiv.org/abs/2312.03761v1
- Date: Tue, 5 Dec 2023 18:54:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 17:52:01.060134
- Title: Learning High-Dimensional Differential Graphs From Multi-Attribute Data
- Title(参考訳): 多属性データから高次元微分グラフを学習する
- Authors: Jitendra K Tugnait
- Abstract要約: 類似構造を持つことが知られている2つのガウス図形モデル(GGM)の違いを推定する問題を考える。
差分グラフ推定の既存の方法は単一属性(SA)モデルに基づいている。
本稿では,多属性データから差分グラフ学習のためのグループラッソペナル化Dトレース損失関数手法を解析する。
- 参考スコア(独自算出の注目度): 12.94486861344922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of estimating differences in two Gaussian graphical
models (GGMs) which are known to have similar structure. The GGM structure is
encoded in its precision (inverse covariance) matrix. In many applications one
is interested in estimating the difference in two precision matrices to
characterize underlying changes in conditional dependencies of two sets of
data. Existing methods for differential graph estimation are based on
single-attribute (SA) models where one associates a scalar random variable with
each node. In multi-attribute (MA) graphical models, each node represents a
random vector. In this paper, we analyze a group lasso penalized D-trace loss
function approach for differential graph learning from multi-attribute data. An
alternating direction method of multipliers (ADMM) algorithm is presented to
optimize the objective function. Theoretical analysis establishing consistency
in support recovery and estimation in high-dimensional settings is provided.
Numerical results based on synthetic as well as real data are presented.
- Abstract(参考訳): 類似構造を持つことが知られている2つのガウス図形モデル(GGM)の違いを推定する問題を考える。
GGM構造はその精度(逆共分散)行列に符号化される。
多くのアプリケーションにおいて、2つの精度行列の違いを推定し、2つのデータ集合の条件依存の根本的な変化を特徴づけることに興味がある。
微分グラフ推定の既存の方法は、各ノードにスカラーランダム変数を関連付ける単一属性(SA)モデルに基づいている。
マルチ属性(MA)グラフィカルモデルでは、各ノードはランダムなベクトルを表す。
本稿では,多属性データから差分グラフ学習のためのグループラッソペナル化Dトレース損失関数手法を解析する。
目的関数を最適化するために,乗算器の交互方向法(ADMM)を提案する。
高次元設定における支持回復と推定の整合性を確立する理論的解析を行う。
合成および実データに基づく数値結果を示す。
関連論文リスト
- Efficient learning of differential network in multi-source non-paranormal graphical models [2.5905193932831585]
本稿では,2種類の非正規グラフィカルモデル間のスパース構造変化や差分ネットワークの学習に対処する。
複数の情報源からのデータセットを組み合わせるという我々の戦略は、実世界の問題における差分ネットワークの推測に非常に効果的であることが示されている。
論文 参考訳(メタデータ) (2024-10-03T13:59:38Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
本稿では,グラフ上の分布と信号の間の新しい距離を提案する。
GFMMDは、グラフ上で滑らかであり、期待差を最大化する最適な目撃関数によって定義される。
グラフベンチマークのデータセットと単一セルRNAシークエンシングデータ解析について紹介する。
論文 参考訳(メタデータ) (2023-06-05T00:01:17Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - uGLAD: Sparse graph recovery by optimizing deep unrolled networks [11.48281545083889]
深層ネットワークを最適化してスパースグラフ復元を行う新しい手法を提案する。
我々のモデルであるuGLADは、最先端モデルGLADを教師なし設定に構築し、拡張します。
我々は, 遺伝子調節ネットワークから生成した合成ガウスデータ, 非ガウスデータを用いて, モデル解析を行い, 嫌気性消化の事例研究を行った。
論文 参考訳(メタデータ) (2022-05-23T20:20:27Z) - Learning Shared Kernel Models: the Shared Kernel EM algorithm [0.0]
予測最大化 (EM) は有限混合分布のパラメータを推定するための教師なし学習法である。
まず、複数の目標追跡の分野からのデータアソシエーションのアイデアを用いた標準EMアルゴリズムの再帰について述べる。
この手法は、共有カーネルモデルに対して、ほとんど知られていないがより一般的なタイプの教師付きEMアルゴリズムに適用される。
論文 参考訳(メタデータ) (2022-05-15T10:10:08Z) - Inference of Multiscale Gaussian Graphical Model [0.0]
階層的なクラスタリング構造と階層のそれぞれのレベルでの独立性構造を記述するグラフを同時に推論する新しい手法を提案する。
実データと合成データの結果が提示される。
論文 参考訳(メタデータ) (2022-02-11T17:11:20Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Learnable Graph-regularization for Matrix Decomposition [5.9394103049943485]
本稿では,行列分解のための学習可能なグラフ正規化モデルを提案する。
グラフ正規化法と確率行列分解モデルの間のブリッジを構築する。
スパース精度行列推定により、2つのグラフィカル構造をリアルタイムで反復的に学習する。
論文 参考訳(メタデータ) (2020-10-16T17:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。