論文の概要: Simplicial Representation Learning with Neural $k$-Forms
- arxiv url: http://arxiv.org/abs/2312.08515v2
- Date: Fri, 15 Mar 2024 11:00:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 22:43:22.249604
- Title: Simplicial Representation Learning with Neural $k$-Forms
- Title(参考訳): ニューラル$k$-Formsを用いた単純表現学習
- Authors: Kelly Maggs, Celia Hacker, Bastian Rieck,
- Abstract要約: 本稿では,ノード座標を用いて,$mathbbRn$に埋め込まれた単体錯体から得られる幾何学的情報を活用することに焦点を当てる。
我々は mathbbRn の微分 k-形式を用いて単純化の表現を作成し、メッセージパッシングなしに解釈可能性と幾何学的整合性を提供する。
本手法は, グラフ, simplicial Complex, セルコンプレックスなど, 様々な入力コンプレックスに適用可能である。
- 参考スコア(独自算出の注目度): 14.566552361705499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometric deep learning extends deep learning to incorporate information about the geometry and topology data, especially in complex domains like graphs. Despite the popularity of message passing in this field, it has limitations such as the need for graph rewiring, ambiguity in interpreting data, and over-smoothing. In this paper, we take a different approach, focusing on leveraging geometric information from simplicial complexes embedded in $\mathbb{R}^n$ using node coordinates. We use differential k-forms in \mathbb{R}^n to create representations of simplices, offering interpretability and geometric consistency without message passing. This approach also enables us to apply differential geometry tools and achieve universal approximation. Our method is efficient, versatile, and applicable to various input complexes, including graphs, simplicial complexes, and cell complexes. It outperforms existing message passing neural networks in harnessing information from geometrical graphs with node features serving as coordinates.
- Abstract(参考訳): 幾何学的深層学習は、特にグラフのような複雑な領域において、幾何学的および位相的データに関する情報を組み込むようにディープラーニングを拡張する。
この分野ではメッセージパッシングの人気にもかかわらず、グラフの書き換えの必要性、データの解釈の曖昧さ、過度なスムース化といった制限がある。
本稿では、ノード座標を用いて、$\mathbb{R}^n$に埋め込まれた単体錯体の幾何学的情報を活用することに焦点をあてて、異なるアプローチをとる。
我々は \mathbb{R}^n の微分 k-形式を用いて単純化の表現を作成し、メッセージパッシングなしで解釈可能性と幾何的整合性を提供する。
このアプローチはまた、微分幾何学ツールを適用し、普遍近似を実現できる。
本手法は, グラフ, simplicial Complex, セルコンプレックスなど, 様々な入力コンプレックスに適用可能である。
これは、座標として機能するノード特徴を持つ幾何学グラフからの情報を活用することで、既存のメッセージパッシングニューラルネットワークよりも優れています。
関連論文リスト
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - On the Expressive Power of Sparse Geometric MPNNs [3.396731589928944]
幾何学グラフに対するメッセージパッシングニューラルネットワークの表現力について検討する。
非同型幾何グラフの一般的なペアは、メッセージパッシングネットワークによって分離可能であることを示す。
論文 参考訳(メタデータ) (2024-07-02T07:48:22Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
本稿では、幾何学的GNNに関するデータ構造、モデル、および応用について調査する。
幾何学的メッセージパッシングの観点から既存のモデルの統一的なビューを提供する。
また、方法論開発と実験評価の後の研究を促進するために、アプリケーションと関連するデータセットを要約する。
論文 参考訳(メタデータ) (2024-03-01T12:13:04Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric
Positive Definite Matrices [8.805129821507046]
実世界のグラフデータは、幾何的および位相的特徴の複数のタイプによって特徴づけられる。
複雑なグラフを堅牢に処理できるグラフニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2023-06-24T21:50:53Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
C 上の対称行列空間におけるグラフの連続表現を学ぶ。
これらの空間は双曲部分空間とユークリッド部分空間を同時に認めるリッチな幾何学を提供する。
提案するモデルは, apriori のグラフ特徴を見積もることなく, まったく異なる配置に自動的に適応することができる。
論文 参考訳(メタデータ) (2021-05-11T18:14:52Z) - Graph Geometry Interaction Learning [41.10468385822182]
本研究では,グラフにおける豊富な幾何学的特性を学習するための,グラフの幾何学的相互作用学習(GIL)手法を開発した。
提案手法は,各ノードに,フレキシブルな二重特徴量相互作用学習と確率組立機構を通じて,各幾何学空間の重要性を決定する自由を与える。
ノード分類とリンク予測タスクに関する5つのベンチマークデータセットについて,実験結果を示す。
論文 参考訳(メタデータ) (2020-10-23T02:40:28Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。