Quantum description of atomic diffraction by material nanostructures
- URL: http://arxiv.org/abs/2312.12818v1
- Date: Wed, 20 Dec 2023 07:41:40 GMT
- Title: Quantum description of atomic diffraction by material nanostructures
- Authors: Quentin Bouton (LPL), G Dutier (LPL), Nathalie Fabre (LPL), Eric
Charron (ISMO), Charles Garcion (LPL), Naceur Gaaloul, Lecoffre Julien (LPL)
- Abstract summary: We present a theoretical model of matter-wave diffraction through a material nanostructure.
This model is based on the numerical solution of the time-dependent Schr"odinger equation.
- Score: 0.08605038103235942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a theoretical model of matter-wave diffraction through a material
nanostructure. This model is based on the numerical solution of the
time-dependent Schr{\"o}dinger equation, which goes beyond the standard
semi-classical approach. In particular, we consider the dispersion force
interaction between the atoms and the material, which is responsible for high
energy variations. The effect of such forces on the quantum model is
investigated, along with a comparison with the semi-classical model. In
particular, for atoms at low velocity and close to the material surface, the
semi-classical approach fails, while the quantum model accurately describes the
expected diffraction pattern. This description is thus relevant for slow and
cold atom experiments where increased precision is required, e.g. for
metrological applications.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum hydrodynamics of coupled electron-nuclear systems [0.0]
The quantum dynamics of electron-nuclear systems is analyzed from the perspective of the exact factorization of the wavefunction.
For pure states this is accomplished with a quantum hydrodynamical description of the nuclear dynamics and electronic density operators tied to the fluid elements.
The theory presented here bridges exact quantum dynamics with several mixed quantum-classical approaches currently in use to tackle non-adiabatic molecular problems.
arXiv Detail & Related papers (2023-10-12T23:26:27Z) - Periodic quantum Rabi model with cold atoms at deep strong coupling [0.0]
We experimentally demonstrate atomic dynamics predicted by the periodic quantum Rabi model far in the deep strong coupling regime.
The observed dynamics becomes relevant when the edge of the Brillouin zone is reached.
arXiv Detail & Related papers (2023-07-12T22:49:07Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Classical, quantum and event-by-event simulation of a Stern-Gerlach
experiment with neutrons [0.0]
We present a comprehensive simulation study of the Newtonian and quantum model of a Stern-Gerlach experiment with cold neutrons.
For a sufficiently strong uniform magnetic field, the particle beam splits in two, exactly as in experiment and in concert with quantum theory.
arXiv Detail & Related papers (2022-08-18T08:24:01Z) - Generalizing the Quantum Information Model for Dynamic Diffraction [0.0]
We present a quantum information (QI) model of dynamical diffraction based on propagating a particle through a lattice of unitary quantum gates.
We show that the model output is mathematically equivalent to the spherical wave solution of the Takagi-Taupin equations when in the appropriate limit.
Results demonstrate the universality of the QI model and its potential for modeling scenarios that are beyond the scope of the standard theory of DD.
arXiv Detail & Related papers (2021-11-10T20:39:33Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.