論文の概要: Data assimilation and parameter identification for water waves using the
nonlinear Schr\"{o}dinger equation and physics-informed neural networks
- arxiv url: http://arxiv.org/abs/2401.03708v1
- Date: Mon, 8 Jan 2024 07:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 17:26:19.318913
- Title: Data assimilation and parameter identification for water waves using the
nonlinear Schr\"{o}dinger equation and physics-informed neural networks
- Title(参考訳): 非線形Schr\"{o}dinger方程式と物理インフォームドニューラルネットワークを用いた水面波のデータの同化とパラメータ同定
- Authors: Svenja Ehlers, Niklas A. Wagner, Annamaria Scherzl, Marco Klein,
Norbert Hoffmann, Merten Stender
- Abstract要約: 波高計などのその場観測装置を用いた深海重力波の上昇の測定は、典型的にはスパースデータを出力する。
この分散性は、設置の労力と高い運用コストのために、限られた数のゲージが配置されたことから生じる。
本稿では、物理インフォームドニューラルネットワーク(PINN)を用いて、物理的に一貫した波動場を再構成する手法を提案する。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The measurement of deep water gravity wave elevations using in-situ devices,
such as wave gauges, typically yields spatially sparse data. This sparsity
arises from the deployment of a limited number of gauges due to their
installation effort and high operational costs. The reconstruction of the
spatio-temporal extent of surface elevation poses an ill-posed data
assimilation problem, challenging to solve with conventional numerical
techniques. To address this issue, we propose the application of a
physics-informed neural network (PINN), aiming to reconstruct physically
consistent wave fields between two designated measurement locations several
meters apart.
Our method ensures this physical consistency by integrating residuals of the
hydrodynamic nonlinear Schr\"{o}dinger equation (NLSE) into the PINN's loss
function. Using synthetic wave elevation time series from distinct locations
within a wave tank, we initially achieve successful reconstruction quality by
employing constant, predetermined NLSE coefficients. However, the
reconstruction quality is further improved by introducing NLSE coefficients as
additional identifiable variables during PINN training. The results not only
showcase a technically relevant application of the PINN method but also
represent a pioneering step towards improving the initialization of
deterministic wave prediction methods.
- Abstract(参考訳): 波動ゲージなどのその場観測装置を用いた深海重力波の上昇の測定は、通常空間的に疎いデータをもたらす。
この間隔は、設置の労力と高い運用コストのために限られた数のゲージが配置されたことから生じる。
表面標高の時空間範囲の再構成は、従来の数値手法では解決が難しい、不適切なデータ同化問題を引き起こす。
そこで本研究では, 物理インフォームドニューラルネットワーク (PINN) を応用し, 数メートル離れた2地点間における物理的に一貫した波動場を再構成することを目的とした。
本手法は, 動的非線形Schr\"{o}dinger equation (NLSE) の残余をPINNの損失関数に統合することにより, この物理的整合性を保証する。
波形タンク内の異なる位置から合成波の上昇時間系列を用いて, 一定かつ所定のNLSE係数を用いることで, 復元精度を向上する。
しかし, PINNトレーニング中に NLSE 係数を付加可能な変数として導入することにより, 再現性をさらに向上する。
結果は,pinn法の技術的応用を示すだけでなく,決定論的波動予測法の初期化を改善するための先駆的なステップを示す。
関連論文リスト
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
論文 参考訳(メタデータ) (2024-07-18T11:51:01Z) - Taper-based scattering formulation of the Helmholtz equation to improve the training process of Physics-Informed Neural Networks [0.0]
この研究は、2つの半無限導波路を接続する接合における入射波の散乱問題に対処する。
PINNはスペクトルバイアスとヘルムホルツ方程式の双曲的性質に悩まされていることが知られている。
我々はヘルムホルツ境界値問題の等価な定式化を提案する。
論文 参考訳(メタデータ) (2024-04-15T13:51:20Z) - Data-driven localized waves and parameter discovery in the massive
Thirring model via extended physics-informed neural networks with interface
zones [3.522950356329991]
深層学習を用いた大規模Thiring(MT)モデルにおいて,データ駆動型局所波動解とパラメータ発見について検討した。
高次局所波解に対しては、拡張PINN(XPINN)とドメイン分解を用いる。
実験結果から, XPINNsの改良により, 収束速度が速く, 計算の複雑さを低減できることがわかった。
論文 参考訳(メタデータ) (2023-09-29T13:50:32Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
我々は,3次元形状を点から復元するという課題に対処する形状再構成アーキテクチャであるニューラルポアソン表面再構成(nPSR)を導入する。
nPSRには2つの大きな利点がある: まず、高分解能評価において同等の性能を達成しつつ、低分解能データの効率的なトレーニングを可能にする。
全体として、ニューラル・ポアソン表面の再構成は、形状再構成における古典的なディープニューラルネットワークの限界を改良するだけでなく、再構築品質、走行時間、分解能非依存の観点からも優れた結果が得られる。
論文 参考訳(メタデータ) (2023-08-03T13:56:07Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
ニューラルネットワークを用いた位相分解波面再構成のための新しい手法を提案する。
提案手法は,一次元格子を用いた合成的かつ高精度な訓練データを利用する。
論文 参考訳(メタデータ) (2023-05-18T12:30:26Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Information Entropy Initialized Concrete Autoencoder for Optimal Sensor
Placement and Reconstruction of Geophysical Fields [58.720142291102135]
そこで本稿では,スパーク計測による地場再構成のためのセンサ配置の最適化について提案する。
本研究では, (a) 温度と (b) バレンツ海周辺の塩分濃度場とスバルバルド諸島群を例に示す。
得られた最適センサ位置は, 物理的解釈が明確であり, 海流の境界に対応することが判明した。
論文 参考訳(メタデータ) (2022-06-28T12:43:38Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Prediction of Ultrasonic Guided Wave Propagation in Solid-fluid and
their Interface under Uncertainty using Machine Learning [0.0]
我々は,構造物の材料および幾何学的特性の不確かさを考慮し,既存研究を推し進める。
本研究では,不確実性の下での多物理問題の解法に固有の複雑性に対処する効率的なアルゴリズムを開発する。
提案手法は不確実性が存在する場合にWpFSI問題を正確に予測する。
論文 参考訳(メタデータ) (2021-03-30T01:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。