論文の概要: Five ethical principles for generative AI in scientific research
- arxiv url: http://arxiv.org/abs/2401.15284v2
- Date: Mon, 12 Feb 2024 05:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 20:44:14.101223
- Title: Five ethical principles for generative AI in scientific research
- Title(参考訳): 科学研究における生成AIの5つの倫理的原則
- Authors: Zhicheng Lin
- Abstract要約: 生成する人工知能ツールは、学術研究と現実世界の応用を急速に変えつつある。
本稿では,5つのテーマにまたがる分析と緩和戦略を開発することで,最初の枠組みを提供する。
我々は、専門家のトレーニングと合理的な執行と組み合わせたグローバルコンセンサスが、研究の完全性を守りながら、AIのメリットを促進する上で重要であると論じている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative artificial intelligence tools like large language models are
rapidly transforming academic research and real world applications. However,
discussions on ethical guidelines for generative AI in science remain
fragmented, underscoring the urgent need for consensus based standards. This
paper offers an initial framework by developing analyses and mitigation
strategies across five key themes: understanding model limitations regarding
truthfulness and bias; respecting privacy, confidentiality, and copyright;
avoiding plagiarism and policy violations when incorporating model output;
ensuring applications provide overall benefit; and using AI transparently and
reproducibly. Common scenarios are outlined to demonstrate potential ethical
violations. We argue that global consensus coupled with professional training
and reasonable enforcement are critical to promoting the benefits of AI while
safeguarding research integrity.
- Abstract(参考訳): 大きな言語モデルのような生成的人工知能ツールは、学術研究や現実世界の応用を急速に変えつつある。
しかし、科学における生成AIの倫理的ガイドラインに関する議論は断片的であり、コンセンサスに基づく標準の緊急の必要性が強調されている。
本論文は,真偽と偏見に関するモデル制約の理解,プライバシ,機密性,著作権の尊重,モデル出力を取り入れた際の盗作行為やポリシー違反の回避,アプリケーション全体のメリットの確保,透過的かつ再現的なAIの使用,5つの主要なテーマにわたる分析と緩和戦略の展開を通じて,最初のフレームワークを提供する。
一般的なシナリオは、潜在的な倫理的違反を示すために概説されている。
グローバルコンセンサスとプロのトレーニングと合理的な実施が、研究の整合性を守りながらaiのメリットを促進する上で重要である、と論じている。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - AI Ethics: An Empirical Study on the Views of Practitioners and
Lawmakers [8.82540441326446]
透明性、説明責任、プライバシは、AI倫理の最も重要な原則です。
倫理的知識の不足、法的枠組みの欠如、監視機関の欠如が、AI倫理の最も一般的な課題である。
論文 参考訳(メタデータ) (2022-06-30T17:24:29Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - From the Ground Truth Up: Doing AI Ethics from Practice to Principles [0.0]
最近のAI倫理は、抽象原則を実践に下方へ適用することに焦点を当てている。
この論文は反対方向に動く。
倫理的な洞察は、具体的な人間の問題に取り組んでいるAI設計者の生きた経験から生まれる。
論文 参考訳(メタデータ) (2022-01-05T15:33:33Z) - A Deployment Model to Extend Ethically Aligned AI Implementation Method
ECCOLA [5.28595286827031]
本研究の目的は、ECCOLAの採用を促進するために、ECCOLAをデプロイメントモデルで拡張することである。
このモデルには、倫理的AI開発における倫理的ギャップや成果のコミュニケーションを容易にするための単純なメトリクスが含まれている。
論文 参考訳(メタデータ) (2021-10-12T12:22:34Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Ethics as a service: a pragmatic operationalisation of AI Ethics [1.1083289076967895]
ギャップは、AI倫理原則の理論と、AIシステムの実践的設計の間に存在している。
これは、原則と技術的な翻訳ツールが、たとえ制限されているとしても、なぜまだ必要であるのかを探求することによって、ここで解決しようとしている問題です。
論文 参考訳(メタデータ) (2021-02-11T21:29:25Z) - Implementing AI Ethics in Practice: An Empirical Evaluation of the
RESOLVEDD Strategy [6.7298812735467095]
我々は,ビジネス倫理学の分野であるRESOLVEDD戦略から,倫理システム開発の文脈において,既存の手法を実証的に評価する。
私たちの重要な発見の1つは、倫理的手法の使用が参加者に強制されたとしても、その利用はプロジェクトにおける倫理的配慮を促進したことである。
論文 参考訳(メタデータ) (2020-04-21T17:58:53Z) - On the Morality of Artificial Intelligence [154.69452301122175]
本稿では,機械学習の研究・展開に関する概念的かつ実践的な原則とガイドラインを提案する。
我々は,より倫理的で道徳的なMLの実践を追求するために,実践者が採る具体的な行動を主張している。
論文 参考訳(メタデータ) (2019-12-26T23:06:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。