論文の概要: Conditional Mean and Variance Estimation via \textit{k}-NN Algorithm with Automated Variance Selection
- arxiv url: http://arxiv.org/abs/2402.01635v2
- Date: Mon, 27 Oct 2025 15:39:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:35.599877
- Title: Conditional Mean and Variance Estimation via \textit{k}-NN Algorithm with Automated Variance Selection
- Title(参考訳): 自動変数選択を用いた \textit{k}-NN アルゴリズムによる条件平均と変数推定
- Authors: Marcos Matabuena, Juan C. Vidal, Oscar Hernan Madrid Padilla, Jukka-Pekka Onnela,
- Abstract要約: 条件平均と分散度を共同で推定するための新しいテクストリック・アレスト・ニアレスト回帰法(textitk-NN)を提案する。
提案アルゴリズムは,古典的非パラメトリックテクトitk-NNモデルの計算効率と多様体学習能力を保持する。
- 参考スコア(独自算出の注目度): 9.943131787772323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel \textit{k}-nearest neighbor (\textit{k}-NN) regression method for joint estimation of the conditional mean and variance. The proposed algorithm preserves the computational efficiency and manifold-learning capabilities of classical non-parametric \textit{k}-NN models, while integrating a data-driven variable selection step that improves empirical performance. By accurately estimating both conditional mean and variance regression functions, the method effectively reconstructs the conditional distribution and density functions for multiple families of scale-and-localization generative models. We show that our estimator can achieve fast convergence rates, and we derive practical rules for selecting the smoothing parameter~$k$ that enhance the precision of the algorithm in finite sample regimes. Extensive simulations for low, moderate and large-dimensional covariate spaces, together with a real-world biomedical application, demonstrate that the proposed method can consistently outperform the conventional \textit{k-NN} regression algorithm while being more interpretable in the model output.
- Abstract(参考訳): そこで本稿では,条件平均と分散の連立推定法として,新しい<textit{k}-nearest neighbor(\textit{k}-NN)回帰法を提案する。
提案アルゴリズムは、古典的非パラメトリックな \textit{k}-NN モデルの計算効率と多様体学習能力を保ちながら、経験的性能を向上させるデータ駆動変数選択ステップを統合する。
条件平均と分散回帰関数の両方を正確に推定することにより、スケール・アンド・ローカライゼーション生成モデルの複数のファミリに対する条件分布と密度関数を効果的に再構成する。
推定器が高速収束率を達成できることを示し、有限標本状態におけるアルゴリズムの精度を高めるスムースなパラメータ~$k$を選択するための実践的なルールを導出する。
低、中等度、大次元の共変量空間に対する広範囲なシミュレーションと実世界のバイオメディカル・アプリケーションにより、提案手法はモデル出力においてより解釈可能でありながら、従来の \textit{k-NN} 回帰アルゴリズムより一貫して優れていることを示した。
関連論文リスト
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
本研究では,微分可能物理の概念に基づいて,非構造格子を階層化するアルゴリズムを提案する。
多孔質媒質中のわずかに圧縮可能な流体流を制御した線形方程式と波動方程式の2つのPDE上でのアルゴリズムの性能を示す。
その結果,検討したシナリオでは,関心点におけるモデル変数のダイナミクスを保ちながら,格子点数を最大10倍に削減した。
論文 参考訳(メタデータ) (2025-07-24T11:02:13Z) - Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
本稿では,両者の時間的分離を必要とせずに,意思決定とIS分布を共同で更新する反復型アルゴリズムを提案する。
本手法は,IS分布系に対する目的的,軽度な仮定の凸性の下で,最小の変数分散を達成し,大域収束を保証する。
論文 参考訳(メタデータ) (2025-04-04T16:10:18Z) - Average-Over-Time Spiking Neural Networks for Uncertainty Estimation in Regression [3.409728296852651]
本稿では,AOT-SNN(Average-Over-Time Spiking Neural Network)フレームワークを回帰タスクに適用する2つの手法を提案する。
おもちゃのデータセットといくつかのベンチマークデータセットの両方に対して、我々のアプローチを評価します。
論文 参考訳(メタデータ) (2024-11-29T23:13:52Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Partially factorized variational inference for high-dimensional mixed models [0.0]
変分推論は、特にベイズ的文脈において、そのような計算を行う一般的な方法である。
標準平均場変動推論は,高次元の後方不確かさを劇的に過小評価することを示した。
次に、平均場仮定を適切に緩和すると、不確実な定量化が高次元で悪化しない手法が導かれることを示す。
論文 参考訳(メタデータ) (2023-12-20T16:12:37Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
変分スパースガウス過程(GP)を用いた線形ラプラス近似(LLA)の近似法を提案する。
本手法はGPの2つのRKHSの定式化に基づいており、予測平均として元のDNNの出力を保持する。
効率のよい最適化が可能で、結果としてトレーニングデータセットのサイズのサブ線形トレーニング時間が短縮される。
論文 参考訳(メタデータ) (2023-02-24T10:32:30Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - High-Dimensional Differentially-Private EM Algorithm: Methods and
Near-Optimal Statistical Guarantees [8.089708900273804]
高次元潜在変数モデルにおける差分プライベート期待最大化(EM)アルゴリズムを設計するための一般的なフレームワークを開発している。
各モデルにおいて、差分プライバシー制約による収束のほぼ最適度を確立する。
この設定では、差分プライバシーを保証する近レート最適EMアルゴリズムを提案します。
論文 参考訳(メタデータ) (2021-04-01T04:08:34Z) - The Variational Method of Moments [65.91730154730905]
条件モーメント問題は、観測可能量の観点から構造因果パラメータを記述するための強力な定式化である。
OWGMMの変動最小値再構成により、条件モーメント問題に対する非常に一般的な推定器のクラスを定義する。
同じ種類の変分変換に基づく統計的推測のためのアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-12-17T07:21:06Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Statistical optimality and stability of tangent transform algorithms in
logit models [6.9827388859232045]
我々は,データ生成過程の条件として,ロジカルオプティマによって引き起こされるリスクに対して,非漸近上界を導出する。
特に,データ生成過程の仮定なしにアルゴリズムの局所的変動を確立する。
我々は,大域収束が得られる半直交設計を含む特別な場合について検討する。
論文 参考訳(メタデータ) (2020-10-25T05:15:13Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Efficient Uncertainty Quantification for Dynamic Subsurface Flow with
Surrogate by Theory-guided Neural Network [0.0]
理論誘導ニューラルネットワーク(TgNN)により構築された代理体を用いた動的地下流れの効率的な不確実性定量化手法を提案する。
パラメータ、時間、位置はニューラルネットワークの入力であり、関心の量は出力である。
トレーニングされたニューラルネットワークは、新しいパラメータで地下流れ問題の解を予測することができる。
論文 参考訳(メタデータ) (2020-04-25T12:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。