論文の概要: The Strain of Success: A Predictive Model for Injury Risk Mitigation and
Team Success in Soccer
- arxiv url: http://arxiv.org/abs/2402.04898v1
- Date: Wed, 7 Feb 2024 14:28:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 15:03:28.020484
- Title: The Strain of Success: A Predictive Model for Injury Risk Mitigation and
Team Success in Soccer
- Title(参考訳): 成功の歪み:サッカーにおける傷害リスク軽減とチーム成功の予測モデル
- Authors: Gregory Everett, Ryan Beal, Tim Matthews, Timothy J. Norman, Sarvapali
D. Ramchurn
- Abstract要約: サッカーにおける新しいチーム選択モデルを提案する。
我々は,実世界のサッカーデータから学習した選手固有の情報を用いて,選手の怪我や不適応の過程をモデル化する。
また,本モデルでは,第1チームのケガを13%減らし,負傷選手に非効率に費やした金額を11%減らした。
- 参考スコア(独自算出の注目度): 13.061659160183071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel sequential team selection model in soccer.
Specifically, we model the stochastic process of player injury and
unavailability using player-specific information learned from real-world soccer
data. Monte-Carlo Tree Search is used to select teams for games that optimise
long-term team performance across a soccer season by reasoning over player
injury probability. We validate our approach compared to benchmark solutions
for the 2018/19 English Premier League season. Our model achieves similar
season expected points to the benchmark whilst reducing first-team injuries by
~13% and the money inefficiently spent on injured players by ~11% -
demonstrating the potential to reduce costs and improve player welfare in
real-world soccer teams.
- Abstract(参考訳): 本稿では,サッカーにおける新しいシーケンシャルチーム選択モデルを提案する。
具体的には,実世界サッカーデータから学習した選手固有の情報を用いて,選手の傷害と使用不能の確率過程をモデル化する。
モンテカルロ・ツリー・サーチ(Monte-Carlo Tree Search)は、サッカーシーズンを通して長期チームのパフォーマンスを最適化するゲームのチームを選択するために用いられる。
2018/19年のイングランド・プレミアリーグシーズンのベンチマークソリューションと比較して,我々のアプローチを検証する。
また,本モデルでは,1チーム当たりのケガを13%減らしつつ,11%減らし,コスト削減の可能性を実証し,実際のサッカーチームにおける選手の福祉改善を図った。
関連論文リスト
- Estimating Player Performance in Different Contexts Using Fine-tuned Large Events Models [0.7373617024876725]
本稿では,Large Event Models (LEM) のサッカー解析への応用について紹介する。
LEMは、単語ではなく、後続のイベントの変数を予測する。
我々は、2017-18シーズンのプレミアリーグシーズンのWyScoutデータセットによる微調整LEMに焦点を当てている。
論文 参考訳(メタデータ) (2024-02-09T22:47:25Z) - Bayes-xG: Player and Position Correction on Expected Goals (xG) using
Bayesian Hierarchical Approach [55.2480439325792]
本研究は, 期待目標(xG)測定値を用いて, 目標となるショットの予測における選手や位置要因の影響について検討した。
StatsBombの公開データを使って、イングランドのプレミアリーグから1万発のショットを分析している。
この研究は、スペインのラ・リガとドイツのブンデスリーガのデータに分析を拡張し、同等の結果を得た。
論文 参考訳(メタデータ) (2023-11-22T21:54:02Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
本稿では,グラフ畳み込みネットワークに基づくエスポートに対する半教師付き勝利予測モデルを提案する。
GCN-WPはマッチとプレーヤに関する30以上の機能を統合し、近隣のゲームを分類するためにグラフ畳み込みを使用している。
本モデルは,LLの機械学習やスキル評価モデルと比較して,最先端の予測精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T21:38:07Z) - Explainable expected goal models for performance analysis in football
analytics [5.802346990263708]
本報告では,2014-15年と2020-21年の7シーズンから315,430発のショットをトレーニングした,欧州サッカーリーグのトップ5のゴールモデルを提案する。
我々の知る限りでは、この論文は、プロファイルを集約した説明可能な人工知能ツールの実用的な応用を実証した最初の論文である。
論文 参考訳(メタデータ) (2022-06-14T23:56:03Z) - Evaluation of creating scoring opportunities for teammates in soccer via
trajectory prediction [7.688133652295848]
実際の動作と軌道予測による参照動作を比較することで,オフボールスコアリングの機会を創出する選手を評価する。
検証のために,プロサッカーリーグのチーム全試合の年間給与,ゴール,評価との関係を検討した。
提案手法は,ボールのない選手がチームメイトに得点率を与えるための指標として有効であることが示唆された。
論文 参考訳(メタデータ) (2022-06-04T03:58:37Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - "Why Would I Trust Your Numbers?" On the Explainability of Expected
Values in Soccer [5.825190876052149]
本稿では,ショットの期待値を推定する,説明可能な一般化付加モデルを提案する。
我々は、練習者が慣れ親しんだピッチ上の指定されたゾーンにショットをファジィに割り当てることで、ショットの位置を表現している。
実験により,我々のモデルは既存のモデルと同じくらい正確であり,サッカー実践者には説明し易いことがわかった。
論文 参考訳(メタデータ) (2021-05-27T10:05:00Z) - Evaluation of soccer team defense based on prediction models of ball
recovery and being attacked [0.8921166277011345]
本研究では,ボールの回復と攻撃の予測に基づいて,チーム防御を評価する手法を提案する。
45試合のデータを用いて,提案する指標とチームパフォーマンスの関係を検討した。
論文 参考訳(メタデータ) (2021-03-17T13:15:41Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
予測的および規範的フットボール分析は、統計学習、ゲーム理論、コンピュータビジョンの交差点における新たな発展と進歩を必要とする。
フットボール分析は、サッカー自体のゲームを変えるだけでなく、この領域がAIの分野で何を意味するのかという観点からも、非常に価値の高いゲームチェンジャーであることを示す。
論文 参考訳(メタデータ) (2020-11-18T10:26:02Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
我々は,不完全情報ゼロサム拡張形式ゲームにおいて,対戦相手と対決する2人の選手のチームにとって最適な戦略を見つけることの課題に焦点をあてる。
この設定では、チームができる最善のことは、ゲーム開始時の関節(つまり相関した)確率分布から潜在的にランダム化された戦略(プレイヤー1人)のプロファイルをサンプリングすることである。
各プロファイルにランダム化されるのはチームメンバーの1人だけであるプロファイルのみを用いることで、そのような最適な分布を計算するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-21T17:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。