論文の概要: Theoretical Analysis of Leave-one-out Cross Validation for
Non-differentiable Penalties under High-dimensional Settings
- arxiv url: http://arxiv.org/abs/2402.08543v1
- Date: Tue, 13 Feb 2024 15:48:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 14:53:30.288280
- Title: Theoretical Analysis of Leave-one-out Cross Validation for
Non-differentiable Penalties under High-dimensional Settings
- Title(参考訳): 高次元条件下における無差別刑罰に対するLeave-out Cross Validationの理論的検討
- Authors: Haolin Zou, Arnab Auddy, Kamiar Rahnama Rad, Arian Maleki
- Abstract要約: 我々は, サンプル外リスクを推定する上で, 期待される2乗誤差(LO)に対して, サンプル上限を有限に設定する。
ここで提示される理論的枠組みは、LOの精度を示す経験的発見を解明するための確かな基盤を提供する。
- 参考スコア(独自算出の注目度): 12.029919627622954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite a large and significant body of recent work focused on estimating the
out-of-sample risk of regularized models in the high dimensional regime, a
theoretical understanding of this problem for non-differentiable penalties such
as generalized LASSO and nuclear norm is missing. In this paper we resolve this
challenge. We study this problem in the proportional high dimensional regime
where both the sample size n and number of features p are large, and n/p and
the signal-to-noise ratio (per observation) remain finite. We provide finite
sample upper bounds on the expected squared error of leave-one-out
cross-validation (LO) in estimating the out-of-sample risk. The theoretical
framework presented here provides a solid foundation for elucidating empirical
findings that show the accuracy of LO.
- Abstract(参考訳): 高次元環境における正規化モデルのアウト・オブ・サンプルリスクを推定することに焦点を当てた近年の大規模かつ重要な研究にもかかわらず、一般化ラッソや核規範のような非微分性ペナルティに対するこの問題の理論的理解は失われている。
本稿では,この課題を解決する。
サンプルサイズ n と特徴数 p の両方が大きく、n/p と信号-雑音比 (観測当たり) が有限である比例的な高次元状態においてこの問題を研究する。
我々は, サンプル外リスクを推定する上で, 期待される2乗誤差(LO)に対して, 有限サンプル上限を与える。
ここで提示される理論的枠組みは、LOの精度を示す経験的発見を解明するための確かな基盤を提供する。
関連論文リスト
- Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
CoT(Chain-of-Thought)の促進とその変種は、多段階推論問題を解決する効果的な方法として人気を集めている。
統計的推定の観点からCoTのプロンプトを解析し,その複雑さを包括的に評価する。
論文 参考訳(メタデータ) (2024-08-25T04:07:18Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
我々は,データポイントが任意の相関関係を持つ場合,リッジ回帰のイン・オブ・サンプルリスクのトレーニング例を提供する。
さらに、テストポイントがトレーニングセットと非自明な相関を持ち、時系列予測で頻繁に発生するような場合まで分析を拡張します。
我々は多種多様な高次元データにまたがって理論を検証する。
論文 参考訳(メタデータ) (2024-08-08T17:27:29Z) - Approximate Leave-one-out Cross Validation for Regression with $\ell_1$
Regularizers (extended version) [12.029919627622954]
微分不可能な正則化をもつ一般化線形モデル族において、幅広い問題に対する新しい理論を提案する。
n/p と SNR が固定され有界である間、|ALO - LO| は p が無限大に進むにつれて 0 となることを示す。
論文 参考訳(メタデータ) (2023-10-26T17:48:10Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
本稿では, 左非可逆なプッシュフォワード写像に制約されたワッサーシュタインGANが, 複製を回避し, 経験的分布から著しく逸脱する分布を生成することを示す。
我々の最も重要な寄与は、生成分布と経験的分布の間のワッサーシュタイン-1距離の有限サンプル下界を与える。
また、生成分布と真のデータ生成との距離に有限サンプル上限を確立する。
論文 参考訳(メタデータ) (2023-07-31T06:11:57Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
ブラインドソース分離(BSS)は、変換$f$が可逆であるが未知であるという条件の下で、その混合である$X=f(S)$から観測されていない信号を復元することを目的としている。
このような違反を分析し、その影響を$X$から$S$のブラインドリカバリに与える影響を定量化するための一般的なフレームワークを提案する。
定義された構造的仮定からの偏差に対する一般的なBSS溶出は、明示的な連続性保証という形で、利益的に分析可能であることを示す。
論文 参考訳(メタデータ) (2023-03-17T16:30:51Z) - A New Central Limit Theorem for the Augmented IPW Estimator: Variance
Inflation, Cross-Fit Covariance and Beyond [0.9172870611255595]
クロスフィッティングを用いたクロスフィッティング逆確率重み付け(AIPW)は、実際は一般的な選択肢である。
本研究では, 高次元状態における結果回帰モデルと確率スコアモデルを用いて, クロスフィット型AIPW推定器について検討する。
本研究は, メッセージパッシング理論, 決定論的等価性理論, 離脱一元的アプローチの3つの異なるツール間の新たな相互作用を利用する。
論文 参考訳(メタデータ) (2022-05-20T14:17:53Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
我々は、不確実性情報を活用し、いくつかの従来のアプローチを直接拡張する、NGEUと呼ばれる新しい次元削減フレームワークを提案する。
提案したNGEUの定式化は,大域的な閉形式解を示し,Radecherの複雑性に基づいて,基礎となる不確実性がフレームワークの一般化能力に理論的にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-02-09T19:01:33Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
多様性フロンティアは生成モデルの評価フレームワークとして提案されている。
分岐フロンティアのプラグイン推定器のサンプル複雑性の非漸近的境界を確立する。
また,スムーズな分布推定器の統計的性能を調べることにより,分散フロンティアの枠組みも強化する。
論文 参考訳(メタデータ) (2021-06-15T06:26:25Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z) - Non-asymptotic Optimal Prediction Error for Growing-dimensional
Partially Functional Linear Models [0.951828574518325]
予測誤差の最大値と最大値の上限を示す。
過剰な予測リスクの正確な上限は、非漸近的な形で示される。
モデルのKulback-Leibler分散の正則性仮定の下で、非漸近ミニマックス下界を導出する。
論文 参考訳(メタデータ) (2020-09-10T08:49:32Z) - Error bounds in estimating the out-of-sample prediction error using
leave-one-out cross validation in high-dimensions [19.439945058410203]
高次元状態におけるサンプル外リスク推定の問題について検討する。
広範囲にわたる経験的証拠は、アウト・ワン・アウト・クロス・バリデーションの正確さを裏付ける。
この理論の技術的利点の1つは、拡張可能な近似LOに関する最近の文献から得られたいくつかの結果を明確化し、接続することができることである。
論文 参考訳(メタデータ) (2020-03-03T20:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。