論文の概要: Guided Quantum Compression for Higgs Identification
- arxiv url: http://arxiv.org/abs/2402.09524v1
- Date: Wed, 14 Feb 2024 19:01:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 18:18:16.803331
- Title: Guided Quantum Compression for Higgs Identification
- Title(参考訳): ヒッグス同定のための誘導量子圧縮
- Authors: Vasilis Belis, Patrick Odagiu, Michele Grossi, Florentin Reiter,
G\"unther Dissertori, Sofia Vallecorsa
- Abstract要約: 量子機械学習は、データを解析するための根本的に斬新で有望なアプローチを提供する。
本研究では,従来のオートエンコーダを独立処理ステップとして使用することにより,量子機械学習アルゴリズムの分類性能を大幅に低下させることができることを示す。
我々は、前処理と量子分類アルゴリズムを単一のトレーニング可能なモデル、すなわちガイド付き量子圧縮モデルに統合するアーキテクチャを設計する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning provides a fundamentally novel and promising
approach to analyzing data. However, many data sets are too complex for
currently available quantum computers. Consequently, quantum machine learning
applications conventionally resort to dimensionality reduction algorithms,
e.g., auto-encoders, before passing data through the quantum models. We show
that using a classical auto-encoder as an independent preprocessing step can
significantly decrease the classification performance of a quantum machine
learning algorithm. To ameliorate this issue, we design an architecture that
unifies the preprocessing and quantum classification algorithms into a single
trainable model: the guided quantum compression model. The utility of this
model is demonstrated by using it to identify the Higgs boson in proton-proton
collisions at the LHC, where the conventional approach proves ineffective.
Conversely, the guided quantum compression model excels at solving this
classification problem, achieving a good accuracy. Additionally, the model
developed herein shows better performance compared to the classical benchmark
when using only low-level kinematic features.
- Abstract(参考訳): 量子機械学習は、データ分析の基本的な新しい、有望なアプローチを提供する。
しかし、多くのデータセットは、現在利用可能な量子コンピュータには複雑すぎる。
したがって、量子機械学習アプリケーションは、量子モデルにデータを渡す前に、従来の次元性低減アルゴリズム、例えばオートエンコーダを頼りにする。
古典的オートエンコーダを独立した前処理ステップとして使用すると,量子機械学習アルゴリズムの分類性能が著しく低下することを示す。
この問題を改善するために,プリプロセッシングアルゴリズムと量子分類アルゴリズムを単一の学習可能なモデルに統一した,ガイド付き量子圧縮モデルを設計した。
このモデルの有用性は、従来のアプローチが有効でないLHCにおける陽子-陽子衝突におけるヒッグス粒子の同定に利用することで実証される。
逆に、ガイド付き量子圧縮モデルは、この分類問題の解法に優れ、精度が良い。
さらに、このモデルでは、低レベルのキネマティック機能のみを使用する場合、古典的なベンチマークよりも優れたパフォーマンスを示す。
関連論文リスト
- Enhancing the performance of Variational Quantum Classifiers with hybrid autoencoders [0.0]
本稿では,特定の量子埋め込みを考慮し,与えられたデータセットの次元性を低減する方法を提案する。
この方法は、VQCを用いた量子機械学習をより汎用的で高次元のデータセットに効果的にすることを目的としている。
論文 参考訳(メタデータ) (2024-09-05T08:51:20Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - MNISQ: A Large-Scale Quantum Circuit Dataset for Machine Learning on/for
Quantum Computers in the NISQ era [2.652805765181667]
MNISQは9つのサブデータセットから構成される4,950,000のデータポイントで構成されている。
我々は、量子形式、回路として、古典形式、量子回路記述として、データセットを二重形式で提供します。
量子カーネル法を用いて回路データセットを検証し,97%の精度で優れた結果を得た。
論文 参考訳(メタデータ) (2023-06-29T02:04:14Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
変分量子アルゴリズム(VQA)を用いた量子機械学習は、ノイズのある中間スケール量子(NISQ)時代の実用的なアルゴリズムとして積極的に研究されている。
近年の研究では、古典的なデータを量子回路に繰り返しエンコードするデータ再アップロードが、表現力のある量子機械学習モデルを得るために必要であることが示されている。
我々は、Kerrnon Parametric Hilberts (KPO) を別の有望な量子コンピューティングデバイスとして用いて量子機械学習を提案する。
論文 参考訳(メタデータ) (2023-05-01T07:01:45Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Fitting a Collider in a Quantum Computer: Tackling the Challenges of
Quantum Machine Learning for Big Datasets [0.0]
この課題に対処するために、特徴とデータプロトタイプの選択手法が研究された。
グリッドサーチが行われ、量子機械学習モデルが訓練され、古典的な浅層機械学習手法に対してベンチマークされた。
量子アルゴリズムの性能は、大規模なデータセットを使用しても、古典的なアルゴリズムに匹敵することがわかった。
論文 参考訳(メタデータ) (2022-11-06T22:45:37Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
量子ウォークスを用いて量子情報拡散パターンを探索する量子探索プロトコルを設計する。
我々は、異常や古典的輸送を調査するために、コヒーレントな静的および動的障害に焦点を当てる。
以上の結果から,複雑なネットワークで発生する欠陥や摂動の情報を読み取る装置として,量子ウォーク(Quantum Walk)が考えられる。
論文 参考訳(メタデータ) (2020-10-20T20:03:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。