論文の概要: Reconstructing the Geometry of Random Geometric Graphs
- arxiv url: http://arxiv.org/abs/2402.09591v1
- Date: Wed, 14 Feb 2024 21:34:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 17:39:41.330261
- Title: Reconstructing the Geometry of Random Geometric Graphs
- Title(参考訳): ランダム幾何グラフの幾何学的再構成
- Authors: Han Huang, Pakawut Jiradilok, Elchanan Mossel
- Abstract要約: ランダム幾何学グラフは、距離空間上で定義されたランダムグラフモデルである。
サンプルグラフから基底空間の幾何を効率的に再構成する方法を示す。
- 参考スコア(独自算出の注目度): 10.120707777188253
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Random geometric graphs are random graph models defined on metric spaces.
Such a model is defined by first sampling points from a metric space and then
connecting each pair of sampled points with probability that depends on their
distance, independently among pairs. In this work, we show how to efficiently
reconstruct the geometry of the underlying space from the sampled graph under
the manifold assumption, i.e., assuming that the underlying space is a low
dimensional manifold and that the connection probability is a strictly
decreasing function of the Euclidean distance between the points in a given
embedding of the manifold in $\mathbb{R}^N$. Our work complements a large body
of work on manifold learning, where the goal is to recover a manifold from
sampled points sampled in the manifold along with their (approximate)
distances.
- Abstract(参考訳): ランダム幾何学グラフは、距離空間上で定義されたランダムグラフモデルである。
そのようなモデルは、計量空間から最初のサンプリング点で定義され、各標本点のペアを、距離に依存する確率と、ペア間で独立に接続する。
本研究では, 基底空間が低次元多様体であると仮定し, 接続確率が, 多様体の任意の埋め込みにおける点間のユークリッド距離を, $\mathbb{r}^n$ で厳密に減少させる関数であることを仮定して, サンプルグラフから基底空間の幾何学を効率的に再構成する方法を示す。
我々の研究は多様体学習に関する大きな研究の成果を補完するものであり、多様体にサンプリングされたサンプル点から多様体を(ほぼ)距離とともに回収することを目的としている。
関連論文リスト
- Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
乱れのないデータから歪んだ表現を学習することは、機械学習における根本的な課題である。
本稿では,2次最適輸送に基づく非交叉表現学習手法を提案する。
提案手法の有効性を4つの標準ベンチマークで示す。
論文 参考訳(メタデータ) (2024-07-10T16:51:32Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Neural Latent Geometry Search: Product Manifold Inference via
Gromov-Hausdorff-Informed Bayesian Optimization [21.97865037637575]
我々は、この新しい定式化を数学的に定義し、ニューラル潜在幾何探索(NLGS)として作成する。
計量幾何学からのグロモフ・ハウスドルフ距離に基づいて、候補潜在測地間の距離の新たな概念を提案する。
次に、潜在測地間の滑らかさの概念に基づいてグラフ探索空間を設計し、その計算を帰納バイアスとして利用する。
論文 参考訳(メタデータ) (2023-09-09T14:29:22Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
グラフを幾何学グラフとみなす: ノードは基礎となる計量空間からランダムにサンプリングされ、その距離が指定された近傍半径以下であれば任意のノードが接続される。
ソーシャルネットワークでは、コミュニティは密集したサンプル領域としてモデル化でき、ハブはより大きな近傍半径を持つノードとしてモデル化できる。
我々は,未知のサンプリング密度を自己監督的に推定する手法を開発した。
論文 参考訳(メタデータ) (2022-10-15T08:01:08Z) - Shape And Structure Preserving Differential Privacy [70.08490462870144]
正方形距離関数の勾配がラプラス機構よりも感度をよりよく制御できることを示す。
また,2乗距離関数の勾配を用いることで,ラプラス機構よりも感度を制御できることを示す。
論文 参考訳(メタデータ) (2022-09-21T18:14:38Z) - Entropic Optimal Transport in Random Graphs [8.7314407902481]
グラフ解析において、古典的なタスクはノード間の(グループの)類似性の計算によって構成される。
潜在空間におけるノード群間の距離を連続的に推定することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-11T13:52:34Z) - Identifying the latent space geometry of network models through analysis
of curvature [7.644165047073435]
本稿では,可換空間の経験的に関連するクラスから多様体の種類,次元,曲率を一貫して推定する手法を提案する。
私たちのコアインサイトは、このグラフを、シリック間の結びつきに基づく騒々しい距離行列として表現することで実現します。
論文 参考訳(メタデータ) (2020-12-19T00:35:29Z) - Ultrahyperbolic Representation Learning [13.828165530602224]
機械学習では、データは通常、点間の距離が直線に沿っているユークリッド空間で表現される。
定数非零曲率の擬リーマン多様体上に存在する表現を提案する。
この幾何学において必要な学習ツールを提供し、勾配に基づく最適化手法を拡張した。
論文 参考訳(メタデータ) (2020-07-01T03:49:24Z) - Disentangling by Subspace Diffusion [72.1895236605335]
データ多様体の完全教師なし分解は、多様体の真の計量が知られている場合、可能であることを示す。
我々の研究は、教師なしメートル法学習が可能であるかどうかという問題を減らし、表現学習の幾何学的性質に関する統一的な洞察を提供する。
論文 参考訳(メタデータ) (2020-06-23T13:33:19Z) - Geometry of Similarity Comparisons [51.552779977889045]
空間形式の順序容量は、その次元と曲率の符号に関係していることを示す。
さらに重要なことは、類似性グラフ上で定義された順序拡散確率変数の統計的挙動が、その基礎となる空間形式を特定するのに利用できることである。
論文 参考訳(メタデータ) (2020-06-17T13:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。