論文の概要: Large Language Models as Urban Residents: An LLM Agent Framework for
Personal Mobility Generation
- arxiv url: http://arxiv.org/abs/2402.14744v1
- Date: Thu, 22 Feb 2024 18:03:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 14:14:16.544597
- Title: Large Language Models as Urban Residents: An LLM Agent Framework for
Personal Mobility Generation
- Title(参考訳): 都市住民としての大規模言語モデル:パーソナルモビリティ生成のためのLLMエージェントフレームワーク
- Authors: Jiawei Wang, Renhe Jiang, Chuang Yang, Zengqing Wu, Makoto Onizuka,
Ryosuke Shibasaki, Chuan Xiao
- Abstract要約: 本稿では,Large Language Models (LLMs) をエージェントフレームワークに統合した,フレキシブルかつ効率的なパーソナルモビリティ生成手法を提案する。
LLMは、セマンティックデータを効率的に処理し、様々なタスクをモデリングする汎用性を提供することによって、以前のモデルの限界を克服する。
- 参考スコア(独自算出の注目度): 20.66295977999949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel approach using Large Language Models (LLMs)
integrated into an agent framework for flexible and efficient personal mobility
generation. LLMs overcome the limitations of previous models by efficiently
processing semantic data and offering versatility in modeling various tasks.
Our approach addresses the critical need to align LLMs with real-world urban
mobility data, focusing on three research questions: aligning LLMs with rich
activity data, developing reliable activity generation strategies, and
exploring LLM applications in urban mobility. The key technical contribution is
a novel LLM agent framework that accounts for individual activity patterns and
motivations, including a self-consistency approach to align LLMs with
real-world activity data and a retrieval-augmented strategy for interpretable
activity generation. In experimental studies, comprehensive validation is
performed using real-world data. This research marks the pioneering work of
designing an LLM agent framework for activity generation based on real-world
human activity data, offering a promising tool for urban mobility analysis.
- Abstract(参考訳): 本稿では,Large Language Models (LLM) をエージェントフレームワークに統合した,フレキシブルかつ効率的なパーソナルモビリティ生成手法を提案する。
LLMは、セマンティックデータを効率的に処理し、様々なタスクをモデリングする汎用性を提供することによって、以前のモデルの限界を克服する。
提案手法は, LLMと実世界の都市移動データとの整合性, リッチな活動データとの整合性, 信頼性の高い活動生成戦略の開発, 都市移動におけるLLM応用の探索という3つの研究課題に焦点をあてる。
主要な技術的貢献は、個々の活動パターンとモチベーションを考慮に入れた新しいLLMエージェントフレームワークであり、LLMを実世界の活動データと整合させる自己整合性アプローチや、解釈可能な活動生成のための検索強化戦略などである。
実験では,実世界のデータを用いて包括的検証を行う。
本研究は,実世界の人間活動データに基づく活動生成のためのllmエージェントフレームワークの設計の先駆的試みであり,都市移動分析に有望なツールを提供する。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - AI PERSONA: Towards Life-long Personalization of LLMs [28.21436822048565]
本稿では,大規模言語モデルの生涯的パーソナライズという課題を紹介する。
寿命のパーソナライズされたLLMシステムの構築とベンチマークのために、すべてのコードとデータを公開します。
論文 参考訳(メタデータ) (2024-12-17T17:17:03Z) - LLMs are Also Effective Embedding Models: An In-depth Overview [40.53941563464671]
大規模言語モデル(LLM)は、様々なタスクで最先端のパフォーマンスを達成することによって、自然言語処理に革命をもたらした。
近年、埋め込みモデルとしての有効性が注目され、ELMoやBERTのような従来のエンコーダのみのモデルから、GPT、LLaMA、Mistralのようなデコーダのみの大規模LLMへとパラダイムシフトした。
論文 参考訳(メタデータ) (2024-12-17T06:48:24Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
本稿では,言語モデルロールアウト(KALM)の知識エージェントを紹介する。
大規模言語モデル(LLM)から、オフラインの強化学習手法によってエージェントが容易に学習できる想像上のロールアウトの形で知識を抽出する。
未確認の目標を持つタスクの実行において46%の成功率を達成し、ベースラインメソッドによって達成された26%の成功率を大幅に上回る。
論文 参考訳(メタデータ) (2024-04-14T13:19:40Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。