論文の概要: Frustration Elimination and Excited State Search in Coherent Ising Machines
- arxiv url: http://arxiv.org/abs/2402.15090v2
- Date: Mon, 07 Apr 2025 13:35:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:06:14.038654
- Title: Frustration Elimination and Excited State Search in Coherent Ising Machines
- Title(参考訳): コヒーレントアイシングマシンにおけるフラストレーション除去と励起状態探索
- Authors: Zheng-Yang Zhou, Clemens Gneiting, J. Q. You, Franco Nori,
- Abstract要約: 本稿では, フラストレーションのないCIM構成に, アシラリーモードを組み込むことで, フラストレーションのないIsingモデルをどのようにマッピングできるかを示す。
これらのアシラリーモードは、エラー検出と励起状態の探索を可能にする。
- 参考スコア(独自算出の注目度): 4.015029887580199
- License:
- Abstract: Frustration, that is, the impossibility of satisfying the energetic preferences between all spin pairs simultaneously, underlies the complexity of many fundamental properties in spin systems, including the computational difficulty in determining their ground states. Coherent Ising machines (CIMs) have been proposed as a promising analog computational approach to efficiently find different degenerate ground states of large and complex Ising models. However, CIMs also face challenges in solving frustrated Ising models: frustration not only reduces the probability of finding good solutions, but it also prohibits the leveraging quantum effects in doing so. To circumvent these detrimental effects of frustration, we show how frustrated Ising models can be mapped to frustration-free CIM configurations by including ancillary modes and modifying the coupling protocol used in current CIM designs. Such frustration elimination may empower current CIMs to benefit from quantum effects in dealing with frustrated Ising models. In addition, these ancillary modes can also enable error detection and searching for excited states.
- Abstract(参考訳): フラストレーション、すなわち、すべてのスピン対間のエネルギー的選好を同時に満たすことの不可能さは、スピン系における多くの基本的な性質の複雑さの根底にある。
コヒーレント・イジング・マシン(CIM)は、大規模で複雑なイジング・モデルの異なる退化基底状態を効率的に見つけるために、有望なアナログ計算手法として提案されている。
しかし、CIMはフラストレーションのあるIsingモデルの解決にも課題に直面している:フラストレーションは良い解を見つける確率を減らすだけでなく、それを行う際の量子効果の活用も禁止している。
フラストレーションによるこれらの有害な影響を回避するため, フラストレーションのないIsingモデルが, 現在のCIM設計で用いられる結合プロトコルを改良して, フラストレーションのないCIM構成にどのようにマッピングできるかを示す。
このようなフラストレーション除去は、現在のCIMにフラストレーションのあるイジングモデルを扱う際の量子効果の恩恵を与える可能性がある。
さらに、これらのアシラリーモードは、エラー検出と励起状態の探索を可能にする。
関連論文リスト
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
実世界の機械学習システムは、基礎となるデータ生成プロセスの分散シフトによって、モデルの性能劣化に遭遇することが多い。
概念のドリフト適応のような既存のシフトへのアプローチは、その理性に依存しない性質によって制限される。
我々はこれらの制限を克服するために自己修復機械学習(SHML)を提案する。
論文 参考訳(メタデータ) (2024-10-31T20:05:51Z) - Encoding arbitrary Ising Hamiltonians on Spatial Photonic Ising Machines [0.0]
本研究では,完全な相互作用行列を直接制御できるSPIMインスタンスを導入,実験的に検証する。
実験によって測定されたIsingエネルギーと理論的な期待値との整合性を実証し、未重み付きグラフ問題と重み付きグラフ問題の両方を解決する。
本手法は,システム固有の利点を犠牲にすることなく,実世界のアプリケーションに適用可能なSPIMを大幅に拡張する。
論文 参考訳(メタデータ) (2024-07-12T10:54:07Z) - L0-regularized compressed sensing with Mean-field Coherent Ising Machines [0.8292466835099597]
量子ノイズを伴わない物理学的な解法である平均場CIMモデルを提案する。
以上の結果から, 提案手法は, 人工磁気共鳴画像データと磁気共鳴画像データの両方において, 物理的に高精度なSDEと類似した性能を有することが明らかとなった。
論文 参考訳(メタデータ) (2024-05-01T07:43:26Z) - Adversarial Training for Physics-Informed Neural Networks [4.446564162927513]
本稿では,AT-PINN と呼ばれる PINN に対する敵的訓練戦略を提案する。
AT-PINNは、逆サンプルを用いてモデルを微調整することにより、PINNの堅牢性を高める。
我々は,マルチスケール係数の楕円型方程式,マルチピーク解のポアソン方程式,鋭解のバーガース方程式,アレン・カーンの方程式にAT-PINNを実装した。
論文 参考訳(メタデータ) (2023-10-18T08:28:43Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、最近、前方および逆問題の両方を解決する能力により、多くの注目を集めている。
そこで我々は, PINN の高次積分法を用いて, 硬質化学動力学を解ける新しい PINN アーキテクチャ, Reduced-PINN を提案する。
論文 参考訳(メタデータ) (2022-08-23T09:20:42Z) - Online Training of Spiking Recurrent Neural Networks with Phase-Change
Memory Synapses [1.9809266426888898]
専用のニューロモルフィックハードウェア上でのスパイクニューラルネットワーク(RNN)のトレーニングは、依然としてオープンな課題である。
本稿では,PCMデバイスモデルに基づく差分構造アレイのシミュレーションフレームワークを提案する。
我々は,最近提案されたe-prop学習規則を用いて,提案したシミュレーションフレームワークに重みをエミュレートしたスパイクRNNを訓練する。
論文 参考訳(メタデータ) (2021-08-04T01:24:17Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。