論文の概要: Sharp bounds for max-sliced Wasserstein distances
- arxiv url: http://arxiv.org/abs/2403.00666v4
- Date: Tue, 2 Apr 2024 16:56:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 08:29:27.814708
- Title: Sharp bounds for max-sliced Wasserstein distances
- Title(参考訳): 最大スライスワッサーシュタイン距離に対するシャープ境界
- Authors: March T. Boedihardjo,
- Abstract要約: 我々は、分離可能なヒルベルト空間上の確率測度と、$n$サンプルからの経験的分布との予想最大1-ワッサーシュタイン距離の上限と下限を一致させる。
また、ユークリッド空間上の対称確率測度$mu$の間の予想最大2-ワッサーシュタイン距離に対して、対数係数まで鋭い上限を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We obtain essentially matching upper and lower bounds for the expected max-sliced 1-Wasserstein distance between a probability measure on a separable Hilbert space and its empirical distribution from $n$ samples. By proving a Banach space version of this result, we also obtain an upper bound, that is sharp up to a log factor, for the expected max-sliced 2-Wasserstein distance between a symmetric probability measure $\mu$ on a Euclidean space and its symmetrized empirical distribution in terms of the operator norm of the covariance matrix of $\mu$ and the diameter of the support of $\mu$.
- Abstract(参考訳): 我々は本質的に、分離可能なヒルベルト空間上の確率測度と$n$サンプルからの経験的分布の間の予想最大スライクな1-ワッサーシュタイン距離に対する上界と下界をマッチングする。
この結果のバナッハ空間バージョンを証明することにより、ユークリッド空間上の対称確率測度$\mu$と、共分散行列の作用素ノルムと$\mu$とのサポートの直径との予想最大スライクな2-ワッサーシュタイン距離に対して、対数係数まで鋭い上限も得られる。
関連論文リスト
- Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
距離の新しい族、相対翻訳不変ワッサーシュタイン距離(RW_p$)を導入する。
我々は、$RW_p 距離もまた、分布変換に不変な商集合 $mathcalP_p(mathbbRn)/sim$ 上で定義される実距離測度であることを示す。
論文 参考訳(メタデータ) (2024-09-04T03:41:44Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Max-sliced 2-Wasserstein distance [0.0]
この注記は、著者の「最大スライスされたワッサーシュタイン距離のシャープ境界」に関する以前の研究の継続である。
同じ手法を用いて、ユークリッド空間上のコンパクトに支持された対称確率測度の間の最大スライクな2-ワッサーシュタイン距離の上限を求める。
論文 参考訳(メタデータ) (2024-03-04T15:53:51Z) - $L^1$ Estimation: On the Optimality of Linear Estimators [64.76492306585168]
この研究は、条件中央値の線型性を誘導する$X$上の唯一の先行分布がガウス分布であることを示している。
特に、条件分布 $P_X|Y=y$ がすべての$y$に対して対称であるなら、$X$ はガウス分布に従う必要がある。
論文 参考訳(メタデータ) (2023-09-17T01:45:13Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
我々は、任意の分布上でニューラルネットワークパラメータを補間する頑健性の低い$Omega(sqrtn/p)$を証明した。
次に、$n=mathrmpoly(d)$のとき、スムーズなデータに対する過度なパラメータ化の利点を示す。
我々は、$n=exp(omega(d))$ のとき、$O(1)$-Lipschitz の頑健な補間関数の存在を否定する。
論文 参考訳(メタデータ) (2022-02-23T16:10:23Z) - Tangent Space and Dimension Estimation with the Wasserstein Distance [10.118241139691952]
ユークリッド空間の滑らかなコンパクト部分多様体の近くで独立にサンプリングされた点の集合を考える。
我々は、その多様体の次元と接空間の両方を推定するために必要なサンプル点の数について数学的に厳密な境界を与える。
論文 参考訳(メタデータ) (2021-10-12T21:02:06Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - Depth-based pseudo-metrics between probability distributions [1.1470070927586016]
本研究では,データ深度に基づく連続確率測度と関連する中央領域の2つの疑似測度を提案する。
Wasserstein距離とは対照的に、提案された疑似メトリックは次元の呪いに苦しむことはない。
地域ベースの擬似メトリックは堅牢なw.r.tである。
両端と尾が重い。
論文 参考訳(メタデータ) (2021-03-23T17:33:18Z) - Nonparametric approximation of conditional expectation operators [0.3655021726150368]
最小の仮定の下で、$[Pf](x) := mathbbE[f(Y) mid X = x ]$ で定義される$L2$-operatorの近似について検討する。
我々は、再生されたカーネル空間上で作用するヒルベルト・シュミット作用素により、作用素ノルムにおいて$P$が任意に適切に近似できることを証明した。
論文 参考訳(メタデータ) (2020-12-23T19:06:12Z) - A Concentration of Measure and Random Matrix Approach to Large
Dimensional Robust Statistics [45.24358490877106]
本稿では,データコレクションである$X = (x_1,ldots,x_n)$を,$x_i = sqrt tau_i z_i + m$で推定する。
我々は、この半測度と測度引数の集中を利用して、ロバストな推定器の存在と特異性を証明し、その制限スペクトル分布を評価する。
論文 参考訳(メタデータ) (2020-06-17T09:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。