論文の概要: Driving Style Alignment for LLM-powered Driver Agent
- arxiv url: http://arxiv.org/abs/2403.11368v1
- Date: Sun, 17 Mar 2024 23:07:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 17:17:15.333807
- Title: Driving Style Alignment for LLM-powered Driver Agent
- Title(参考訳): LLM駆動ドライバエージェントの駆動スタイルアライメント
- Authors: Ruoxuan Yang, Xinyue Zhang, Anais Fernandez-Laaksonen, Xin Ding, Jiangtao Gong,
- Abstract要約: 実演やフィードバックを通じてドライバーエージェントを人間運転スタイルに整合させる枠組みを提案する。
我々は,自然主義運転実験とポストドライブインタビューを通じて,人間の運転行動の自然言語データセットを構築した。
このフレームワークの有効性は、CARLA都市交通シミュレータのシミュレーション実験を通じて検証され、さらに人間による評価によって裏付けられる。
- 参考スコア(独自算出の注目度): 9.057138382259065
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, LLM-powered driver agents have demonstrated considerable potential in the field of autonomous driving, showcasing human-like reasoning and decision-making abilities.However, current research on aligning driver agent behaviors with human driving styles remains limited, partly due to the scarcity of high-quality natural language data from human driving behaviors.To address this research gap, we propose a multi-alignment framework designed to align driver agents with human driving styles through demonstrations and feedback. Notably, we construct a natural language dataset of human driver behaviors through naturalistic driving experiments and post-driving interviews, offering high-quality human demonstrations for LLM alignment. The framework's effectiveness is validated through simulation experiments in the CARLA urban traffic simulator and further corroborated by human evaluations. Our research offers valuable insights into designing driving agents with diverse driving styles.The implementation of the framework and details of the dataset can be found at the link.
- Abstract(参考訳): 近年, LLM を利用した運転エージェントは, 運転者の運転行動と人間の運転スタイルの整合性を示すなど, 自律運転の分野で大きな可能性を秘めている。しかしながら, 人間の運転行動から, 高品質な自然言語データが不足していることもあって, 運転エージェントと人間運転スタイルの整合性を示すために, デモやフィードバックを通じてドライバーエージェントを人間運転スタイルに整合させることを目的とした多機能化フレームワークが提案されている。
特に,人間の運転行動の自然言語データセットを,自然主義的な運転実験とポストドライブインタビューを通じて構築し,LLMアライメントのための高品質な人間の実演を提供する。
このフレームワークの有効性は、CARLA都市交通シミュレータのシミュレーション実験を通じて検証され、さらに人間による評価によって裏付けられる。
我々の研究は、様々な運転スタイルで運転エージェントを設計するための貴重な洞察を与え、そのフレームワークの実装とデータセットの詳細はリンクで見ることができる。
関連論文リスト
- Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
論文 参考訳(メタデータ) (2024-05-09T17:52:42Z) - DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model [84.29836263441136]
本研究は,マルチモーダル大言語モデル(MLLM)に基づく新しい解釈可能なエンドツーエンド自動運転システムであるDriveGPT4を紹介する。
DriveGPT4は、車両動作の解釈を促進し、関連する推論を提供し、ユーザによるさまざまな質問に効果的に対処する。
論文 参考訳(メタデータ) (2023-10-02T17:59:52Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
半協調行動は、人間ドライバーの本質的な性質であり、自律運転には考慮すべきである。
新たな自律型プランナーは、社会的に準拠した軌道を生成するために、人間のドライバーの社会的価値指向(SVO)を考慮することができる。
エージェントが反復的最適応答のゲーム理論バージョンをデプロイする暗黙的な半協調運転について検討する。
論文 参考訳(メタデータ) (2023-04-23T16:01:36Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
本稿では,他のドライバの動作から不確実性が生ずる移動トラフィックにマージする複雑なタスクに焦点を当てる。
我々はこの問題を部分的に観測可能なマルコフ決定プロセス(POMDP)とみなし、モンテカルロ木探索でオンラインに解決する。
POMDPの解決策は、接近する車に道を譲る、前方の車から安全な距離を維持する、あるいは交通に合流するといった、高いレベルの運転操作を行う政策である。
論文 参考訳(メタデータ) (2023-03-29T16:12:45Z) - Editing Driver Character: Socially-Controllable Behavior Generation for
Interactive Traffic Simulation [29.623575243494475]
交通シミュレーションは、自動運転計画システムの評価と改善において重要な役割を果たす。
自動運転車がさまざまな対話的な交通シナリオで安全かつ効率的な操作を確実にするためには、自動運転車を反応性のあるエージェントに対して評価する必要がある。
本研究では,この目的のために社会的に制御可能な行動生成モデルを提案する。
論文 参考訳(メタデータ) (2023-03-24T06:38:42Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
本研究では,運転行動に対して高品質で伝達可能で適応可能な予測を生成する階層型フレームワークであるHATNを提案する。
我々は,交差点における実交通データの軌跡予測と,インターActionデータセットからのラウンドアバウンドのタスクにおいて,我々のアルゴリズムを実証する。
論文 参考訳(メタデータ) (2022-02-10T16:46:24Z) - Inverse Reinforcement Learning Based Stochastic Driver Behavior Learning [3.4979173592795374]
ドライバーは、交通の中で車両を操作する際に、ユニークでリッチな運転行動を持つ。
本稿では,現実的な運転シナリオにおける人間の運転行動の独特性と豊かさを捉えた,新しい運転行動学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-01T20:18:03Z) - Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars [1.160208922584163]
自動運転ポリシーを生成するために,モデルフリーで深層強化学習手法を導入する。
本研究では,2車線道路における静的障害物回避タスクをシミュレーションで検討する。
このアプローチが人間ライクな運転ポリシーにつながることを実証します。
論文 参考訳(メタデータ) (2020-06-07T18:20:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。