論文の概要: An invitation to the sample complexity of quantum hypothesis testing
- arxiv url: http://arxiv.org/abs/2403.17868v2
- Date: Fri, 26 Apr 2024 20:00:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 23:05:49.180939
- Title: An invitation to the sample complexity of quantum hypothesis testing
- Title(参考訳): 量子仮説テストにおけるサンプル複雑性への招待
- Authors: Hao-Chung Cheng, Nilanjana Datta, Nana Liu, Theshani Nuradha, Robert Salzmann, Mark M. Wilde,
- Abstract要約: 量子仮説テスト(QHT)は伝統的に情報理論の観点から研究されてきた。
我々はQHTのサンプル複雑性について検討し、目的は所望の誤差確率に到達するために必要なサンプルの最小数を決定することである。
- 参考スコア(独自算出の注目度): 15.499012185410662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum hypothesis testing (QHT) has been traditionally studied from the information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of samples of an unknown state. In this paper, we study the sample complexity of QHT, wherein the goal is to determine the minimum number of samples needed to reach a desired error probability. By making use of the wealth of knowledge that already exists in the literature on QHT, we characterize the sample complexity of binary QHT in the symmetric and asymmetric settings, and we provide bounds on the sample complexity of multiple QHT. In more detail, we prove that the sample complexity of symmetric binary QHT depends logarithmically on the inverse error probability and inversely on the negative logarithm of the fidelity. As a counterpart of the quantum Stein's lemma, we also find that the sample complexity of asymmetric binary QHT depends logarithmically on the inverse type II error probability and inversely on the quantum relative entropy. We then provide lower and upper bounds on the sample complexity of multiple QHT, with it remaining an intriguing open question to improve these bounds. The final part of our paper outlines and reviews how sample complexity of QHT is relevant to a broad swathe of research areas and can enhance understanding of many fundamental concepts, including quantum algorithms for simulation and search, quantum learning and classification, and foundations of quantum mechanics. As such, we view our paper as an invitation to researchers coming from different communities to study and contribute to the problem of sample complexity of QHT, and we outline a number of open directions for future research.
- Abstract(参考訳): 量子仮説テスト(QHT)は情報理論の観点から伝統的に研究されており、未知の状態のサンプル数の関数としての誤差確率の最適減衰率に関心がある。
本稿では,QHTのサンプル複雑性について検討し,本研究の目的は,所望の誤差確率に到達するために必要なサンプルの最小数を決定することである。
QHTの文献にすでに存在する豊富な知識を利用することにより、対称的および非対称的な設定において二項QHTのサンプル複雑性を特徴付けるとともに、複数のQHTのサンプル複雑性に限界を与える。
より詳しくは、対称二項QHTのサンプル複雑性が逆誤差確率と正の正の対数に依存することを証明している。
量子シュタインの補題とは対照的に、非対称二項 QHT のサンプル複雑性は逆タイプIIの誤差確率と逆相対エントロピーに対数的に依存する。
次に、複数のQHTのサンプルの複雑さについて下限と上限を提供し、これらの境界を改善するために興味深い疑問が残る。
本稿の最終部では、QHTのサンプルの複雑さが研究領域の広さにどのように関係しているかを概説し、シミュレーションと探索のための量子アルゴリズム、量子学習と分類、量子力学の基礎など、多くの基本的な概念の理解を高めることができる。
そこで本稿は,QHTのサンプル複雑性問題への研究・貢献を,異なるコミュニティからの研究者に依頼するものであると考え,今後の研究に向けてのオープンな方向性を概説する。
関連論文リスト
- Taming Quantum Time Complexity [50.10645865330582]
時間複雑性の設定において、正確さと遠心性の両方を達成する方法を示します。
我々は、トランスデューサと呼ばれるものに基づく量子アルゴリズムの設計に新しいアプローチを採用する。
論文 参考訳(メタデータ) (2023-11-27T14:45:19Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
我々はカーンズのSQオラクルとヴァリアントの弱い評価オラクルからインスピレーションを得ます。
評価クエリから学習するための非条件の下限を出力する,広範かつ直感的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-26T18:23:21Z) - Quantum Computational Complexity and Symmetry [3.9134031118910264]
量子状態とチャネルの対称性をテストすることは、それらの有用性を評価する方法を提供する。
BQP, QMA, QSZK, QIP(2), QIP_EB(2), QIPに対して, 種々の対称性試験問題が完備であることを示す。
また、QMAとQAMに2つのハミルトン対称性試験問題を含むことを証明した。
論文 参考訳(メタデータ) (2023-09-18T18:48:44Z) - Optimal lower bounds for Quantum Learning via Information Theory [3.093890460224435]
我々は、PACとモデルの両方において、情報理論的アプローチにより、量子サンプルの複雑さに対して最適な下界を導出する。
次に、確率論から古典的な問題であるクーポンコレクタ問題(英語版)の量子アナログに目を向ける。
量子クーポンコレクター問題のすべての側面は、関連するグラム行列のスペクトルの性質について研究する。
論文 参考訳(メタデータ) (2023-01-05T18:55:04Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - Unitary property testing lower bounds by polynomials [0.15229257192293197]
我々は、量子アルゴリズムにブラックボックスのユニタリへのクエリアクセスを与えるユニタリプロパティテストについて研究する。
これらの問題の複雑さを特徴づけるには、新しいアルゴリズム技術と低いバウンド法が必要である。
我々は、$mathsfQMA$と$mathsfQMA(2)$の間のオラクル分離に対するユニタリなプロパティテストベースのアプローチを示す。
論文 参考訳(メタデータ) (2022-10-12T03:01:00Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
証明可能な性能保証を伴う忠実度推定のための新しい,効率的な量子アルゴリズムを開発した。
我々のアルゴリズムは量子特異値変換のような高度な量子線型代数技術を用いる。
任意の非自明な定数加算精度に対する忠実度推定は一般に困難であることを示す。
論文 参考訳(メタデータ) (2022-03-30T02:02:16Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
形状対応を見つけることは、NP-hard quadratic assignment problem (QAP)として定式化できる。
本稿では,アルファ拡大アルゴリズムに触発されたQAPの反復量子法Q-Matchを提案する。
Q-Match は、実世界の問題にスケールできるような長文対応のサブセットにおいて、反復的に形状マッチング問題に適用できる。
論文 参考訳(メタデータ) (2021-05-06T17:59:38Z) - Learning k-qubit Quantum Operators via Pauli Decomposition [11.498089180181365]
現在の量子系の量子ビット容量の制限により、量子サンプルの複雑さを$k$-qubit量子作用素で調べる。
我々は、$k$-qubitの量子演算の量子サンプルの複雑さが、その量子演算の古典的なサンプルの複雑さに匹敵することを示した。
論文 参考訳(メタデータ) (2021-02-10T01:20:55Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
パウリの誤差は、多数の現実的な量子チャネルの中で最も低いサンプリングオーバーヘッドをもたらすことを示す。
我々はQEMと量子チャネル符号化を併用する手法を考案し、純粋なQEMと比較してサンプリングオーバーヘッドの低減を解析する。
論文 参考訳(メタデータ) (2020-12-15T15:51:27Z) - Learnability and Complexity of Quantum Samples [26.425493366198207]
量子回路が与えられた場合、量子コンピュータは古典的コンピュータよりも出力分布を指数関数的に高速にサンプリングすることができる。
一定のトレーニング時間でnでスケールするトレーニングパラメータを持つモデルを用いて、基礎となる量子分布を学習できるだろうか?
本稿では,Deep Boltzmann Machine (DBM), Generative Adrial Networks (GANs), Long Short-Term Memory (LSTM), Autoregressive GANの4種類の生成モデルについて,深部ランダム回路で生成された量子データセットの学習について検討する。
論文 参考訳(メタデータ) (2020-10-22T18:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。