論文の概要: A finite operator learning technique for mapping the elastic properties of microstructures to their mechanical deformations
- arxiv url: http://arxiv.org/abs/2404.00074v1
- Date: Thu, 28 Mar 2024 19:57:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 07:27:29.265538
- Title: A finite operator learning technique for mapping the elastic properties of microstructures to their mechanical deformations
- Title(参考訳): 有限演算子学習によるミクロ組織の弾性特性と機械的変形のマッピング
- Authors: Shahed Rezaei, Shirko Faroughi, Mahdi Asgharzadeh, Ali Harandi, Gottfried Laschet, Stefanie Reese, Markus Apel,
- Abstract要約: 本稿では,機械平衡の解法をパラメトリックに学習する手法を提案する。
マイクロメカニクスを例として、マイクロメカニクスの知識が不可欠である。
演算子学習と有限要素法にインスパイアされた本手法は,他の数値解法からのデータに頼らずに学習できることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To develop faster solvers for governing physical equations in solid mechanics, we introduce a method that parametrically learns the solution to mechanical equilibrium. The introduced method outperforms traditional ones in terms of computational cost while acceptably maintaining accuracy. Moreover, it generalizes and enhances the standard physics-informed neural networks to learn a parametric solution with rather sharp discontinuities. We focus on micromechanics as an example, where the knowledge of the micro-mechanical solution, i.e., deformation and stress fields for a given heterogeneous microstructure, is crucial. The parameter under investigation is the Young modulus distribution within the heterogeneous solid system. Our method, inspired by operator learning and the finite element method, demonstrates the ability to train without relying on data from other numerical solvers. Instead, we leverage ideas from the finite element approach to efficiently set up loss functions algebraically, particularly based on the discretized weak form of the governing equations. Notably, our investigations reveal that physics-based training yields higher accuracy compared to purely data-driven approaches for unseen microstructures. In essence, this method achieves independence from data and enhances accuracy for predictions beyond the training range. The aforementioned observations apply here to heterogeneous elastic microstructures. Comparisons are also made with other well-known operator learning algorithms, such as DeepOnet, to further emphasize the advantages of the newly proposed architecture.
- Abstract(参考訳): 固体力学における物理方程式を高速に制御する解法を開発するために,パラメトリックに機械平衡の解を学習する手法を提案する。
提案手法は計算コストの観点から従来の手法より優れ,精度を良好に維持する。
さらに、標準的な物理インフォームドニューラルネットワークを一般化し、拡張し、かなり鋭い不連続性を持つパラメトリック解を学習する。
本稿では, マイクロメカニクスを例として, マイクロメカニクスに焦点をあてる。そこでは, マイクロメカニクスの知識, すなわち, 与えられた不均一なミクロ組織に対する変形および応力場が不可欠である。
検討中のパラメータは、不均質固体系のヤング率分布である。
演算子学習と有限要素法にインスパイアされた本手法は,他の数値解法からのデータに頼らずに学習できることを実証する。
代わりに、有限要素アプローチのアイデアを活用して、特に支配方程式の離散化弱形式に基づいて、損失関数を代数的に効率的に設定する。
特に、物理学に基づくトレーニングは、純粋なデータ駆動型アプローチよりも精度が高いことが、我々の研究で明らかになった。
本質的に、この方法はデータからの独立性を達成し、トレーニング範囲を超えた予測の精度を高める。
上述の観察は、異種弾性構造に適用される。
DeepOnetのような他のよく知られた演算子学習アルゴリズムとの比較も行われ、新しく提案されたアーキテクチャの利点をさらに強調している。
関連論文リスト
- Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
本稿では,ニューラルネットワーク,物理情報処理機械学習,およびPDEを解くための標準的な数値法を組み合わせた手法を提案する。
データのない方法で偏微分方程式をパラメトリックに解き、正確な感度を与えることができる。
本研究では, 不均一材料中の定常熱方程式に着目した。
論文 参考訳(メタデータ) (2024-07-04T21:23:12Z) - MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
物理学における関数方程式を解くための強化学習フレームワークであるMultiSTOPを開発した。
この新しい手法は境界ではなく実際の数値解を生成する。
論文 参考訳(メタデータ) (2024-04-23T10:51:31Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
パラメトリゼーションを必要とせず, 種々の測地における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
物理を意識したCNNの結果は、最先端のデータベースアプローチと比較される。
論文 参考訳(メタデータ) (2023-08-04T05:09:06Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
我々は、データ駆動アプローチが、工学や物理学の問題を解決する従来の手法を補完する方法についての洞察を提供する。
我々は,PDE演算子学習の解演算子を学習するための,新しい,高速な機械学習に基づくアプローチを強調した。
論文 参考訳(メタデータ) (2023-01-30T23:29:33Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
データ駆動手法を用いて超弾性材料をシミュレートする手法を提案する。
ニューラルネットワークは、境界条件と結果の変位場との間の非線形関係を学習するために訓練される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-17T12:15:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。