論文の概要: Formation-Controlled Dimensionality Reduction
- arxiv url: http://arxiv.org/abs/2404.06808v1
- Date: Wed, 10 Apr 2024 07:55:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 15:10:01.539775
- Title: Formation-Controlled Dimensionality Reduction
- Title(参考訳): 生成制御された次元性低減
- Authors: Taeuk Jeong, Yoon Mo Jung,
- Abstract要約: 本稿では,次元還元のための非線形力学系を提案する。
このシステムは、近隣の点の制御、局所的な構造への対処、大域的な構造を考慮した遠隔の点の制御という2つの部分から構成される。
- 参考スコア(独自算出の注目度): 0.11510009152620665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dimensionality reduction represents the process of generating a low dimensional representation of high dimensional data. Motivated by the formation control of mobile agents, we propose a nonlinear dynamical system for dimensionality reduction. The system consists of two parts; the control of neighbor points, addressing local structures, and the control of remote points, accounting for global structures. We also include a brief mathematical observation of the model and its numerical procedure. Numerical experiments are performed on both synthetic and real datasets and comparisons with existing models demonstrate the soundness and effectiveness of the proposed model.
- Abstract(参考訳): 次元の減少は、高次元データの低次元表現を生成する過程を表す。
移動体エージェントの形成制御を動機として,次元還元のための非線形力学系を提案する。
このシステムは、近隣の点の制御、局所的な構造への対処、大域的な構造を考慮した遠隔の点の制御という2つの部分から構成される。
また、モデルとその数値計算手順の簡単な数学的観察も含んでいる。
合成モデルと実モデルの両方で数値実験を行い、既存のモデルとの比較により、提案モデルの有効性と有効性を示す。
関連論文リスト
- Subspace-Constrained Quadratic Matrix Factorization: Algorithm and Applications [1.689629482101155]
多様体学習における課題に対処するために,部分空間制約付き二次行列分解モデルを提案する。
このモデルは、接空間、正規部分空間、二次形式を含む重要な低次元構造を共同で学習するように設計されている。
その結果,本モデルは従来の手法よりも優れており,コア低次元構造を捉える上での頑健さと有効性を強調した。
論文 参考訳(メタデータ) (2024-11-07T13:57:53Z) - Generative Learning of the Solution of Parametric Partial Differential Equations Using Guided Diffusion Models and Virtual Observations [4.798951413107239]
本研究では,高次元パラメトリックシステムをモデル化するための生成学習フレームワークを提案する。
我々は,部分微分方程式(PDE)で記述されたシステムについて,構造的あるいは非構造的グリッドで識別する。
論文 参考訳(メタデータ) (2024-07-31T20:52:33Z) - Generative Learning for Forecasting the Dynamics of Complex Systems [5.393540462038596]
本稿では,複雑なシステムのシミュレーションを高速化するための生成モデルについて紹介する。
その結果、生成学習は、計算コストを削減し、複雑なシステムの統計特性を正確に予測するための新たなフロンティアを提供することを示した。
論文 参考訳(メタデータ) (2024-02-27T02:44:40Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
我々は、一般の2階粒子モデルにおけるデータ駆動的な発見に焦点を当てる。
本稿では、2つの実世界の魚の動きデータセットのモデリングへの応用について述べる。
論文 参考訳(メタデータ) (2023-11-01T23:45:15Z) - Deep Kernel Learning of Dynamical Models from High-Dimensional Noisy
Data [1.3750624267664155]
このフレームワークは、高次元の測定結果を低次元状態変数に圧縮するエンコーダで構成されている。
提案モデルのトレーニングは,ラベル付きデータに頼らず,教師なしで実施される。
結果から,提案手法は実測値を効果的に認識し,コンパクトな状態表現と潜在力学モデルを学ぶことができることがわかった。
論文 参考訳(メタデータ) (2022-08-27T09:47:44Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
本稿では,体積変形可能なオブジェクトに対する動作条件の視覚力学モデルであるACIDを紹介する。
ベンチマークには17,000以上のアクション・トラジェクトリー、6種類のぬいぐるみと78種類の変種が含まれている。
我々のモデルは、幾何学、対応、力学の予測において最高の性能を達成する。
論文 参考訳(メタデータ) (2022-03-14T04:56:55Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Quadratic mutual information regularization in real-time deep CNN models [51.66271681532262]
擬似相互情報による正規化手法を提案する。
種々の二項分類問題の実験を行い,提案モデルの有効性を示した。
論文 参考訳(メタデータ) (2021-08-26T13:14:24Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。