論文の概要: Minimax Optimal Goodness-of-Fit Testing with Kernel Stein Discrepancy
- arxiv url: http://arxiv.org/abs/2404.08278v3
- Date: Wed, 22 Jan 2025 21:59:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:07.232014
- Title: Minimax Optimal Goodness-of-Fit Testing with Kernel Stein Discrepancy
- Title(参考訳): カーネルステイン差分法による最小最適適合性試験
- Authors: Omar Hagrass, Bharath Sriperumbudur, Krishnakumar Balasubramanian,
- Abstract要約: 我々は、カーネル化されたStein discrepancy (KSD) を用いた一般領域における適合性試験の極小最適性について検討する。
KSDは適合性テストのための強力なフレームワークであるが、その統計的最適性はほとんど探索されていない。
未知のパラメータに適応することで、対数係数まで最小限の最適性を達成できる適応テストを導入する。
- 参考スコア(独自算出の注目度): 13.429541377715298
- License:
- Abstract: We explore the minimax optimality of goodness-of-fit tests on general domains using the kernelized Stein discrepancy (KSD). The KSD framework offers a flexible approach for goodness-of-fit testing, avoiding strong distributional assumptions, accommodating diverse data structures beyond Euclidean spaces, and relying only on partial knowledge of the reference distribution, while maintaining computational efficiency. Although KSD is a powerful framework for goodness-of-fit testing, only the consistency of the corresponding tests has been established so far, and their statistical optimality remains largely unexplored. In this paper, we develop a general framework and an operator-theoretic representation of the KSD, encompassing many existing KSD tests in the literature, which vary depending on the domain. Building on this representation, we propose a modified discrepancy by applying the concept of spectral regularization to the KSD framework. We establish the minimax optimality of the proposed regularized test for a wide range of the smoothness parameter $\theta$ under a specific alternative space, defined over general domains, using the $\chi^2$-divergence as the separation metric. In contrast, we demonstrate that the unregularized KSD test fails to achieve the minimax separation rate for the considered alternative space. Additionally, we introduce an adaptive test capable of achieving minimax optimality up to a logarithmic factor by adapting to unknown parameters. Through numerical experiments, we illustrate the superior performance of our proposed tests across various domains compared to their unregularized counterparts.
- Abstract(参考訳): 我々は、カーネル化されたStein discrepancy (KSD) を用いて、一般領域における適合性テストの極小最適性について検討する。
KSDフレームワークは、適合性テストのための柔軟なアプローチを提供し、強い分布仮定を避け、ユークリッド空間を超えて多様なデータ構造を収容し、計算効率を維持しながら参照分布の部分的知識のみに依存する。
KSDは適合性テストのための強力なフレームワークであるが、対応するテストの整合性のみが確立されており、その統計的最適性はほとんど探索されていない。
本稿では,文献における多くの既存のKSDテストを含む一般フレームワークとKSDの演算子論的表現を,ドメインによって異なる形で開発する。
この表現に基づいて,スペクトル正規化の概念をKSDフレームワークに適用することにより,不一致の修正を提案する。
偏微分距離として$\chi^2$-divergenceを用いて、一般領域上で定義された特定の代替空間の下で、スムーズ性パラメータ$\theta$の広い範囲に対して提案された正規化テストの極大最適性を確立する。
対照的に、非正規化KSDテストは、検討された代替空間のミニマックス分離率を達成できないことを示す。
さらに,未知のパラメータに適応することで,対数係数まで最小限の最適性を達成できる適応テストを導入する。
数値実験により, 提案した試験の非正規化試験と比較して, 種々の領域における優れた性能を示す。
関連論文リスト
- Robust Kernel Hypothesis Testing under Data Corruption [6.430258446597413]
データ破損下での頑健な置換テストを構築するための2つの一般的な方法を提案する。
最小限の条件下での力の一貫性を証明する。
これは、潜在的な敵攻撃を伴う現実世界のアプリケーションに対する仮説テストの実践的な展開に寄与する。
論文 参考訳(メタデータ) (2024-05-30T10:23:16Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
本稿では,計算複雑性に着目した単純な対数-単純仮説テストの問題を再考する。
線形スペクトル統計に基づく既存の試験は、I型とII型の誤差率の間の最良のトレードオフ曲線を達成する。
論文 参考訳(メタデータ) (2023-11-01T04:41:16Z) - Spectral Regularized Kernel Two-Sample Tests [7.915420897195129]
MMD (maximum mean discrepancy) two-sample test to be optimal to the terms of the separation boundary in the Hellinger distance。
スペクトル正則化に基づくMDD試験の修正を提案し,MMD試験よりも分離境界が小さく,最小限の試験が最適であることを証明した。
その結果,テストしきい値がエレガントに選択されるテストの置換変種が,サンプルの置換によって決定されることがわかった。
論文 参考訳(メタデータ) (2022-12-19T00:42:21Z) - Controlling Moments with Kernel Stein Discrepancies [74.82363458321939]
Kernel Steindisrepancies (KSD) は分布近似の品質を測定する。
まず、弱収束制御に使用される標準KSDがモーメント収束制御に失敗することを示す。
次に、代替拡散KSDがモーメントと弱収束の両方を制御できる十分な条件を提供する。
論文 参考訳(メタデータ) (2022-11-10T08:24:52Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
カーネルベースの不一致測度は、(i)ターゲットPを他の確率測度から分離するか、(ii)Pへの弱収束を制御する必要がある。
本稿では, (i) と (ii) を保証するのに十分な,必要な新しい条件を導出する。
可分距離空間上のMDDに対して、ボヒナー埋め込み可測度を分離するカーネルを特徴づけ、すべての測度を非有界カーネルと分離するための単純な条件を導入する。
論文 参考訳(メタデータ) (2022-09-26T16:41:16Z) - A Fourier representation of kernel Stein discrepancy with application to
Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces [6.437931786032493]
Kernel Stein discrepancy (KSD) は、確率測度間の差異のカーネルベースの尺度である。
我々は、分離可能なヒルベルト空間に横たわるデータの一般性において、KSDを初めて解析する。
これにより、KSDが測定を分離できることを証明できるので、実際は有効である。
論文 参考訳(メタデータ) (2022-06-09T15:04:18Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - KSD Aggregated Goodness-of-fit Test [38.45086141837479]
我々は、異なるカーネルで複数のテストを集約するKSDAggと呼ばれるテストを構築する戦略を導入する。
我々は、KSDAggのパワーに関する漸近的でない保証を提供する。
KSDAggは、他の最先端のKSDベースの適合性試験方法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-02T00:33:09Z) - Generalised Kernel Stein Discrepancy(GKSD): A Unifying Approach for
Non-parametric Goodness-of-fit Testing [5.885020100736158]
KSD(Non-parametric Goodness-of-fit testing procedure)は、一般的な非正規分布を検証するための有望なアプローチである。
我々は,KSDに基づく適合性テストの実行において,異なるStein演算子を理論的に比較・解釈するための統一フレームワークである一般化カーネルSteindisrepancy(GKSD)を提案する。
論文 参考訳(メタデータ) (2021-06-23T00:44:31Z) - Learning Deep Kernels for Non-Parametric Two-Sample Tests [50.92621794426821]
2組のサンプルが同じ分布から引き出されるかどうかを判定するカーネルベースの2サンプルテストのクラスを提案する。
私たちのテストは、テストパワーを最大化するためにトレーニングされたディープニューラルネットワークによってパラメータ化されたカーネルから構築されます。
論文 参考訳(メタデータ) (2020-02-21T03:54:23Z) - A Kernel Stein Test for Comparing Latent Variable Models [48.32146056855925]
本稿では、相対的適合性を示すカーネルベースの非パラメトリックテストを提案する。このテストの目的は、2つのモデルを比較することである。
本試験は, モデルから得られたサンプルに基づいて, 潜伏構造を利用せず, 相対的な最大平均離散性試験よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2019-07-01T07:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。