論文の概要: Evaluating AI for Law: Bridging the Gap with Open-Source Solutions
- arxiv url: http://arxiv.org/abs/2404.12349v1
- Date: Thu, 18 Apr 2024 17:26:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 18:52:16.591047
- Title: Evaluating AI for Law: Bridging the Gap with Open-Source Solutions
- Title(参考訳): AIを法律で評価する - オープンソースソリューションによるギャップのブリッジ
- Authors: Rohan Bhambhoria, Samuel Dahan, Jonathan Li, Xiaodan Zhu,
- Abstract要約: 本研究では,ChatGPTのような汎用AIの法的質問応答における性能を評価する。
これらの問題を克服するためにドメイン固有の知識によって強化された基礎モデルを活用することを提案する。
- 参考スコア(独自算出の注目度): 32.550204238857724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study evaluates the performance of general-purpose AI, like ChatGPT, in legal question-answering tasks, highlighting significant risks to legal professionals and clients. It suggests leveraging foundational models enhanced by domain-specific knowledge to overcome these issues. The paper advocates for creating open-source legal AI systems to improve accuracy, transparency, and narrative diversity, addressing general AI's shortcomings in legal contexts.
- Abstract(参考訳): 本研究では、ChatGPTのような汎用AIの法的質問応答タスクにおけるパフォーマンスを評価し、法律専門家やクライアントに対する重大なリスクを浮き彫りにする。
これらの問題を克服するためにドメイン固有の知識によって強化された基礎モデルを活用することを提案する。
この論文は、正確性、透明性、物語の多様性を改善するために、オープンソースの法的AIシステムを作ることを提唱し、法的な文脈における一般AIの欠点に対処する。
関連論文リスト
- Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness [1.5029560229270191]
AIにおける公平性というトピックは、ここ数年で意味のある議論を巻き起こした。
法的な見地からは、多くのオープンな疑問が残る。
AI法は、これらの2つのアプローチをブリッジする大きな一歩を踏み出すかもしれない。
論文 参考訳(メタデータ) (2024-03-29T09:54:09Z) - Advancing Legal Reasoning: The Integration of AI to Navigate
Complexities and Biases in Global Jurisprudence with Semi-Automated
Arbitration Processes (SAAPs) [0.0]
本研究は,米国,英国,ルワンダ,スウェーデン,香港の5カ国にまたがる裁判所判決の分析に焦点を当てた。
本稿では,高度言語モデル(ALM)と新たに導入された人間-AI協調フレームワークを組み込むことで,基礎理論に基づく研究設計をAIで分析することを目的とする。
論文 参考訳(メタデータ) (2024-02-06T16:47:34Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Promises and pitfalls of artificial intelligence for legal applications [19.8511844390731]
この主張は現在の証拠には支持されないと我々は主張する。
私たちは3種類の法的タスクにおいて、AIの役割がますます広くなっていることを掘り下げます。
法的な文脈におけるAIの評価と展開の改善を推奨する。
論文 参考訳(メタデータ) (2024-01-10T19:50:37Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - AI and Legal Argumentation: Aligning the Autonomous Levels of AI Legal
Reasoning [0.0]
法的議論は正義の重要な基盤であり、敵対的な法の形を支えている。
広範囲にわたる研究は、人工知能(AI)を含むコンピュータベースの自動化を使用して、法的議論を拡大または実施しようと試みている。
AI法則推論のLevels of Autonomy(LoA)をAIの成熟と法体系化(AILA)に適用するために、革新的なメタアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-11T22:05:40Z) - Authorized and Unauthorized Practices of Law: The Role of Autonomous
Levels of AI Legal Reasoning [0.0]
法分野は、認可された法律実務(APL)と無認可の法律実務(UPL)を定義することを目指している。
本稿では,AILR自律レベルに適用する上で,APLとUPLの基盤となる重要な特徴を記述した新たなインスツルメンタルグリッドについて検討する。
論文 参考訳(メタデータ) (2020-08-19T18:35:58Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。