論文の概要: GEEvo: Game Economy Generation and Balancing with Evolutionary Algorithms
- arxiv url: http://arxiv.org/abs/2404.18574v1
- Date: Mon, 29 Apr 2024 10:31:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:07:29.217425
- Title: GEEvo: Game Economy Generation and Balancing with Evolutionary Algorithms
- Title(参考訳): GEEvo: 進化的アルゴリズムによるゲーム経済の生成とバランス
- Authors: Florian Rupp, Kai Eckert,
- Abstract要約: グラフベースのゲーム経済を創出し、新たに生成された経済と既存の経済のバランスをとるための枠組みを提案する。
提案手法は, 生成されたデータセット上で, 様々なバランスの取れた目標をテストし, ベンチマークする。
本研究では,2つの人気キャラクタークラスの2つのフィクション経済に対するダメージバランスを評価するケーススタディを行う。
- 参考スコア(独自算出の注目度): 0.28273304533873334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Game economy design significantly shapes the player experience and progression speed. Modern game economies are becoming increasingly complex and can be very sensitive to even minor numerical adjustments, which may have an unexpected impact on the overall gaming experience. Consequently, thorough manual testing and fine-tuning during development are essential. Unlike existing works that address algorithmic balancing for specific games or genres, this work adopts a more abstract approach, focusing on game balancing through its economy, detached from a specific game. We propose GEEvo (Game Economy Evolution), a framework to generate graph-based game economies and balancing both, newly generated or existing economies. GEEvo uses a two-step approach where evolutionary algorithms are used to first generate an economy and then balance it based on specified objectives, such as generated resources or damage dealt over time. We define different objectives by differently parameterizing the fitness function using data from multiple simulation runs of the economy. To support this, we define a lightweight and flexible game economy simulation framework. Our method is tested and benchmarked with various balancing objectives on a generated dataset, and we conduct a case study evaluating damage balancing for two fictional economies of two popular game character classes.
- Abstract(参考訳): ゲームエコノミーのデザインは、プレイヤーの体験と進行速度を大きく形作る。
現代のゲーム経済はますます複雑化しており、小さな数値調整にも非常に敏感であり、ゲーム全体の体験に予期せぬ影響を及ぼす可能性がある。
したがって、開発中に徹底的な手動テストと微調整が不可欠である。
特定のゲームやジャンルのアルゴリズム的バランスに対処する既存の作業とは異なり、この作業はより抽象的なアプローチを採用し、特定のゲームから切り離された経済を通じたゲームのバランスに重点を置いている。
GEEvo(ゲームエコノミー進化)は,グラフベースのゲームエコノミーを生成し,新たに生成された経済と既存経済のバランスをとるためのフレームワークである。
GEEvoは2段階のアプローチを採用しており、まずは進化的アルゴリズムを使用して経済を発生させ、その後、生成したリソースや時間とともに処理された損傷といった特定の目的に基づいてバランスをとる。
我々は、経済の複数のシミュレーション実行から得られたデータを用いて、適合関数を異なるパラメータ化することで、異なる目的を定義する。
これをサポートするために,軽量でフレキシブルなゲームエコノミーシミュレーションフレームワークを定義した。
提案手法は,生成したデータセット上で様々なバランスの取れた目標を用いてテスト・ベンチマークを行い,2つの人気ゲームキャラクタクラスの2つのフィクションエコノミーに対するダメージバランスを評価するケーススタディを行う。
関連論文リスト
- Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance Analysis [24.683917771144536]
ゼロサム競争シナリオにおけるバランスを定量化する尺度を開発する。
我々は、合成の有用なカテゴリを特定し、それらのカウンター関係をピンポイントする。
私たちのフレームワークは、Eage of Empires II、Hearthstone、Brawl Stars、League of Legendsなど、人気のあるオンラインゲームで検証されています。
論文 参考訳(メタデータ) (2024-08-30T10:28:36Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
IDGEプロジェクトは、大規模な言語モデルが自由形式のゲームルールに従うことを可能にすることで、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオに対するモデルの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
私たちの最初の進歩は、汎用的なカードゲームであるPoker用のIDGEを開発することです。
論文 参考訳(メタデータ) (2024-03-30T08:02:16Z) - Evolutionary Tabletop Game Design: A Case Study in the Risk Game [0.1474723404975345]
本研究は、テーブルトップゲームに対するアプローチの拡張を提案し、リスクの変種を生成することによってプロセスを評価する。
我々は、選択したパラメータを進化させる遺伝的アルゴリズムと、ゲームをテストするルールベースのエージェントを用いてこれを達成した。
結果は、より小さなマップを持つオリジナルゲームの新たなバリエーションが作成され、結果としてより短いマッチとなることを示している。
論文 参考訳(メタデータ) (2023-10-30T20:53:26Z) - On the Convergence of No-Regret Learning Dynamics in Time-Varying Games [89.96815099996132]
時間変化ゲームにおける楽観的勾配降下(OGD)の収束を特徴付ける。
我々のフレームワークは、ゼロサムゲームにおけるOGDの平衡ギャップに対して鋭い収束境界をもたらす。
また,静的ゲームにおける動的後悔の保証に関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2023-01-26T17:25:45Z) - How Bad is Selfish Driving? Bounding the Inefficiency of Equilibria in
Urban Driving Games [64.71476526716668]
我々は,任意の平衡選手がプレーに同意するであろう効率について検討する。
我々は、アナーキーの価格に関する既存の境界を洗練させる保証を得る。
提案手法はオープンループ軌道に対する懸念を保証しているが,エージェントがクローズドループポリシーを採用する場合においても,効率的な平衡を観測する。
論文 参考訳(メタデータ) (2022-10-24T09:32:40Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
我々は平均場相関と粗相関平衡の概念を発展させる。
ゲームの構造に関する仮定を必要とせず,効率よくゲーム内で学習できることが示される。
論文 参考訳(メタデータ) (2022-08-22T08:31:46Z) - Evolutionary Game-Theoretical Analysis for General Multiplayer
Asymmetric Games [22.753799819424785]
不正確さなしに、ペイオフテーブルと動的分析のギャップを埋める。
いくつかの古典ゲームにおいて,本手法を最先端のゲームと比較する。
論文 参考訳(メタデータ) (2022-06-22T14:06:23Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
固定ゼロサムゲームにおける繰り返しプレイからの学習は、ゲーム理論とオンライン学習における古典的な問題である。
提案手法は,3つの性能基準の下で,良好な保証を同時に享受できる1つのパラメータフリーアルゴリズムである。
本アルゴリズムは,ある特性を満たすブラックボックスベースラーナー群に対するメタアルゴリズムを用いた2層構造に基づく。
論文 参考訳(メタデータ) (2022-01-30T06:10:04Z) - BBE: Simulating the Microstructural Dynamics of an In-Play Betting
Exchange via Agent-Based Modelling [0.0]
Bristol Betting Exchange(BBE)は、現代的なオンラインスポーツ賭け交換の無料のオープンソースエージェントベースのシミュレーションモデルです。
BBEは、賭け交換で生じる問題に対するAIおよび機械学習(ML)技術の応用を研究する研究者のための共通のプラットフォーム、データソースおよび実験的テストベッドとして意図されています。
BBEは、スポーツイベントに賭けるための利益戦略の自動発見や改善のための大規模な高解像度データセットの生成を可能にする概念実証システムとして提供される。
論文 参考訳(メタデータ) (2021-05-18T06:52:08Z) - Metagame Autobalancing for Competitive Multiplayer Games [0.10499611180329801]
ゲーム設計において,マルチプレイヤーゲームのバランスをとるためのツールを提案する。
我々のアプローチでは,設計者がメタゲームターゲットの直感的なグラフィカル表現を構築する必要がある。
このツールの能力は、Rock-Paper-Scissors から継承された例や、より複雑な非対称戦闘ゲームにおいて示す。
論文 参考訳(メタデータ) (2020-06-08T08:55:30Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
ゲームプレイを通じて,ゲームの記述を明示せず,託宣のみにアクセス可能な,重要で一般的なゲーム解決環境について検討する。
限られたデュレーション学習フェーズにおいて、アルゴリズムは両方のプレイヤーのアクションを制御し、ゲームを学習し、それをうまくプレイする方法を学習する。
私たちのモチベーションは、クエリされた戦略プロファイルの支払いを評価するのにコストがかかる状況において、利用可能性の低い戦略を迅速に学習することにあります。
論文 参考訳(メタデータ) (2020-02-24T20:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。