論文の概要: Generative AI in Higher Education: A Global Perspective of Institutional Adoption Policies and Guidelines
- arxiv url: http://arxiv.org/abs/2405.11800v1
- Date: Mon, 20 May 2024 05:46:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:03:49.322282
- Title: Generative AI in Higher Education: A Global Perspective of Institutional Adoption Policies and Guidelines
- Title(参考訳): 高等教育におけるジェネレーティブAI : 制度導入政策とガイドラインのグローバルな展望
- Authors: Yueqiao Jin, Lixiang Yan, Vanessa Echeverria, Dragan Gašević, Roberto Martinez-Maldonado,
- Abstract要約: 本研究は,世界6大学40校の高等教育におけるGAI導入戦略を検討するために,Diffusion of Innovations Theoryを利用する。
その結果,大学によるGAI統合への積極的アプローチが明らかとなり,学術的完全性,教育と学習の強化,エクイティが強調された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating generative AI (GAI) into higher education is crucial for preparing a future generation of GAI-literate students. Yet a thorough understanding of the global institutional adoption policy remains absent, with most of the prior studies focused on the Global North and the promises and challenges of GAI, lacking a theoretical lens. This study utilizes the Diffusion of Innovations Theory to examine GAI adoption strategies in higher education across 40 universities from six global regions. It explores the characteristics of GAI innovation, including compatibility, trialability, and observability, and analyses the communication channels and roles and responsibilities outlined in university policies and guidelines. The findings reveal a proactive approach by universities towards GAI integration, emphasizing academic integrity, teaching and learning enhancement, and equity. Despite a cautious yet optimistic stance, a comprehensive policy framework is needed to evaluate the impacts of GAI integration and establish effective communication strategies that foster broader stakeholder engagement. The study highlights the importance of clear roles and responsibilities among faculty, students, and administrators for successful GAI integration, supporting a collaborative model for navigating the complexities of GAI in education. This study contributes insights for policymakers in crafting detailed strategies for its integration.
- Abstract(参考訳): 生成型AI(GAI)を高等教育に組み込むことは,次世代のGAIリテラル学生の育成に不可欠である。
しかし、グローバル・ノースとGAIの約束と課題に焦点を当てた以前の研究は、理論的なレンズが欠如していたため、国際機関の制度採用政策の徹底的な理解はいまだ残っていない。
本研究は,世界6大学40校の高等教育におけるGAI導入戦略を検討するために,Diffusion of Innovations Theoryを利用する。
大学政策やガイドラインに概説されたコミュニケーションチャネル,役割,責任を分析するとともに,GAIの互換性,試行性,可観測性などの特徴について考察する。
その結果,大学によるGAI統合への積極的アプローチが明らかとなり,学術的完全性,教育と学習の強化,エクイティが強調された。
慎重で楽観的な姿勢にもかかわらず、GAI統合の影響を評価し、より広範な利害関係者の関与を促進する効果的なコミュニケーション戦略を確立するためには、包括的な政策枠組みが必要である。
本研究は、教員、学生、管理者がGAI統合を成功させる上での明確な役割と責任の重要性を強調し、教育におけるGAIの複雑さをナビゲートするための協調モデルを支援する。
本研究は、政策立案者にとって、その統合のための詳細な戦略を構築する上での洞察に寄与する。
関連論文リスト
- Faculty Perspectives on the Potential of RAG in Computer Science Higher Education [0.0]
仮想教示アシスタントと教示アシスタントの2つのタスクに対する検索補助(RAG)アプリケーションを開発した。
本研究は,LLMに基づくRAGの教育への応用に関する教員のフィードバックを収集した初めてのものである。
論文 参考訳(メタデータ) (2024-07-28T14:55:22Z) - Responsible Adoption of Generative AI in Higher Education: Developing a "Points to Consider" Approach Based on Faculty Perspectives [0.0]
本稿では,高等教育におけるジェネレーティブAI導入の責任を負うアプローチを提案する。
高等教育の目標、価値、構造的特徴に敏感な「考慮すべきポイント」アプローチを採用している。
論文 参考訳(メタデータ) (2024-06-01T23:25:06Z) - The global landscape of academic guidelines for generative AI and Large Language Models [8.420666056013685]
ジェネレーティブ・人工知能(GAI)とLarge Language Models(LLM)の学界への統合は、その潜在的な教育的利益と倫理的考察に関する世界的な議論を刺激している。
ポジティブな反応は、コラボレーティブな創造性、教育へのアクセスの増加、トレーナーとトレーナーの強化など、いくつかの可能性を強調している。
しかし、ネガティブな反応は、倫理的な複雑さ、イノベーションと学術的整合性のバランス、不平等なアクセス、誤情報リスクに関する懸念を引き起こす。
論文 参考訳(メタデータ) (2024-05-26T15:28:24Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
本稿では,エッジインテリジェンス(EI)と社会学習(SL)の統合に関する文献レビューの結果について述べる。
SLは、エージェントの協調能力と集団知性を増幅することを目的とした、社会的原則と行動に基づく学習パラダイムである。
ソーシャル化アーキテクチャ、ソーシャル化トレーニング、ソーシャル化推論の3つの統合コンポーネントについて詳しく検討し、その強みと弱点を分析した。
論文 参考訳(メタデータ) (2024-04-20T11:07:29Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - A Comprehensive AI Policy Education Framework for University Teaching
and Learning [0.0]
本研究は,テキスト生成型AI技術の認識と意義を検証し,高等教育のためのAI教育政策を開発することを目的とする。
香港の大学では457人の学生と180人の教師とスタッフからデータを収集した。
本研究は,大学教育と学習におけるAI統合の多面的意味に対処する,AIエコロジー教育政策フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-29T15:35:39Z) - Variational Empowerment as Representation Learning for Goal-Based
Reinforcement Learning [114.07623388322048]
本稿では,標準目標条件付きRL (GCRL) を目的変動エンパワーメントによってカプセル化する方法について論じる。
我々の研究は、ゴールベースRLで表現学習技術を評価し、分析し、開発する新しい基礎を築いた。
論文 参考訳(メタデータ) (2021-06-02T18:12:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。