論文の概要: A Comprehensive AI Policy Education Framework for University Teaching
and Learning
- arxiv url: http://arxiv.org/abs/2305.00280v1
- Date: Sat, 29 Apr 2023 15:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 16:01:43.289871
- Title: A Comprehensive AI Policy Education Framework for University Teaching
and Learning
- Title(参考訳): 大学教育・学習のための総合的AI政策教育フレームワーク
- Authors: Cecilia Ka Yuk Chan
- Abstract要約: 本研究は,テキスト生成型AI技術の認識と意義を検証し,高等教育のためのAI教育政策を開発することを目的とする。
香港の大学では457人の学生と180人の教師とスタッフからデータを収集した。
本研究は,大学教育と学習におけるAI統合の多面的意味に対処する,AIエコロジー教育政策フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study aims to develop an AI education policy for higher education by
examining the perceptions and implications of text generative AI technologies.
Data was collected from 457 students and 180 teachers and staff across various
disciplines in Hong Kong universities, using both quantitative and qualitative
research methods. Based on the findings, the study proposes an AI Ecological
Education Policy Framework to address the multifaceted implications of AI
integration in university teaching and learning. This framework is organized
into three dimensions: Pedagogical, Governance, and Operational. The
Pedagogical dimension concentrates on using AI to improve teaching and learning
outcomes, while the Governance dimension tackles issues related to privacy,
security, and accountability. The Operational dimension addresses matters
concerning infrastructure and training. The framework fosters a nuanced
understanding of the implications of AI integration in academic settings,
ensuring that stakeholders are aware of their responsibilities and can take
appropriate actions accordingly.
- Abstract(参考訳): 本研究は,テキスト生成型AI技術の認識と意義を検証し,高等教育のためのAI教育政策を開発することを目的とする。
香港大学で457人の学生と180人の教員とスタッフから,定量的・質的調査手法を用いて収集した。
本研究は,大学教育と学習におけるAI統合の多面的影響に対処する,AIエコロジー教育政策枠組みを提案する。
このフレームワークは、Pedagogical、Government、Operationalの3つの次元に分けられます。
教育のディメンションはAIを使用して教育と学習の成果を改善することに集中し、ガバナンスディメンションはプライバシ、セキュリティ、説明責任に関する問題に取り組む。
運用次元は、インフラストラクチャとトレーニングに関する問題に対処する。
このフレームワークは、学術的な設定におけるai統合の意味を微妙に理解し、ステークホルダーが責任を認識し、適切な行動を取ることを保証する。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
教育におけるAIは、妥当性、信頼性、透明性、公平性、公平性に関する倫理的な懸念を提起する。
教育者、政策立案者、組織を含む様々な利害関係者は、教育における倫理的AIの使用を保証するガイドラインを開発した。
本稿では,AIを活用したツールの教育測定における倫理的意義について検討する。
論文 参考訳(メタデータ) (2024-06-27T05:28:40Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Comparative Analysis Vision of Worldwide AI Courses [11.231658712906878]
この研究は、先進大学の多様なコース構造を掘り下げ、現代のトレンドと優先順位を探求し、AI教育における曖昧なアプローチを明らかにする。
また、コアAIトピックと、頻繁に教えられる学習内容について、CS2023のカリキュラムガイダンスと比較し、収束と分散を識別する。
論文 参考訳(メタデータ) (2024-06-04T03:53:57Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
本研究では、人工知能(AI)と機械学習(ML)が教育内容、教師の談話、学生の反応を分析して教育改善を促進する方法について検討する。
私たちは、教師のコーチング、学生のサポート、コンテンツ開発など、AI/ML統合が大きな利点をもたらす重要な領域を特定します。
本稿では,AI/ML技術と教育的目標との整合性の重要性を強調し,その教育的可能性を実現する。
論文 参考訳(メタデータ) (2024-03-06T18:29:18Z) - From Algorithm Worship to the Art of Human Learning: Insights from 50-year journey of AI in Education [0.0]
人工知能(AI)を取り巻く現在の談話は、希望と理解の間に振動する。
本稿は、AIが教育において果たす役割の複雑さを考察し、教育者と警告された教育者が混ざったメッセージに対処するものである。
倫理的意味に関する懸念を背景に、AIが大規模にパーソナライゼーションを通じて学習を強化するという約束を探求する。
論文 参考訳(メタデータ) (2024-02-05T16:12:14Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Creation and Evaluation of a Pre-tertiary Artificial Intelligence (AI)
Curriculum [58.86139968005518]
香港大学(CUHK)-Jockey Club AI for the Future Project(AI4Future)は、第3次教育のためのAIカリキュラムを共同開発した。
工学と教育を専門とする14人の教授が、6つの中学校の17の校長と教師と協力してカリキュラムを共同作成した。
共同創造プロセスは、AIにおける教師の知識を高める様々なリソースを生み出し、その課題を教室に持ち込むための教師の自主性を育んだ。
論文 参考訳(メタデータ) (2021-01-19T11:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。