論文の概要: A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains
- arxiv url: http://arxiv.org/abs/2405.12465v2
- Date: Wed, 22 May 2024 05:53:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 12:47:38.067373
- Title: A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains
- Title(参考訳): 任意の領域上の時空間偏微分方程式に対する有限要素に基づく物理インフォームド演算子学習フレームワーク
- Authors: Yusuke Yamazaki, Ali Harandi, Mayu Muramatsu, Alexandre Viardin, Markus Apel, Tim Brepols, Stefanie Reese, Shahed Rezaei,
- Abstract要約: 偏微分方程式(PDE)によって支配される力学を予測できる新しい有限要素に基づく物理演算子学習フレームワークを提案する。
提案した演算子学習フレームワークは、現在の時間ステップで温度場を入力として、次の時間ステップで温度場を予測する。
ネットワークは、FEM溶液と比較して、任意の初期温度場の時間的変化を高精度に予測することに成功した。
- 参考スコア(独自算出の注目度): 33.7054351451505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel finite element-based physics-informed operator learning framework that allows for predicting spatiotemporal dynamics governed by partial differential equations (PDEs). The proposed framework employs a loss function inspired by the finite element method (FEM) with the implicit Euler time integration scheme. A transient thermal conduction problem is considered to benchmark the performance. The proposed operator learning framework takes a temperature field at the current time step as input and predicts a temperature field at the next time step. The Galerkin discretized weak formulation of the heat equation is employed to incorporate physics into the loss function, which is coined finite operator learning (FOL). Upon training, the networks successfully predict the temperature evolution over time for any initial temperature field at high accuracy compared to the FEM solution. The framework is also confirmed to be applicable to a heterogeneous thermal conductivity and arbitrary geometry. The advantages of FOL can be summarized as follows: First, the training is performed in an unsupervised manner, avoiding the need for a large data set prepared from costly simulations or experiments. Instead, random temperature patterns generated by the Gaussian random process and the Fourier series, combined with constant temperature fields, are used as training data to cover possible temperature cases. Second, shape functions and backward difference approximation are exploited for the domain discretization, resulting in a purely algebraic equation. This enhances training efficiency, as one avoids time-consuming automatic differentiation when optimizing weights and biases while accepting possible discretization errors. Finally, thanks to the interpolation power of FEM, any arbitrary geometry can be handled with FOL, which is crucial to addressing various engineering application scenarios.
- Abstract(参考訳): 偏微分方程式(PDE)によって支配される時空間力学を予測できる,有限要素に基づく物理インフォームド演算子学習フレームワークを提案する。
提案フレームワークは、有限要素法(FEM)にヒントを得た損失関数と、暗黙のオイラー時間積分方式を用いる。
過渡的な熱伝導問題は、性能をベンチマークするために考慮される。
提案した演算子学習フレームワークは、現在の時間ステップで温度場を入力として、次の時間ステップで温度場を予測する。
熱方程式の離散化弱定式化は、有限作用素学習(FOL)と呼ばれる損失関数に物理学を組み込むために用いられる。
トレーニング中、ネットワークは、FEM溶液と比較して高い精度で初期温度場の時間的変化を予測することに成功した。
この枠組みは、不均一な熱伝導率と任意の幾何学にも適用可能であることが確認されている。
まず、トレーニングは教師なしの方法で行われ、コストのかかるシミュレーションや実験で準備された大規模なデータセットが不要になる。
代わりに、ガウス乱数過程とフーリエ級数によって生成されたランダムな温度パターンと一定の温度場が組み合わさって起こりうる温度ケースをカバーするためのトレーニングデータとして使用される。
第二に、整形関数と後方差分近似が領域の離散化に利用され、純粋に代数方程式となる。
これにより、重みとバイアスを最適化する際の時間を要する自動微分を回避し、識別エラーを許容しながら、トレーニング効率を高めることができる。
最後に、FEMの補間力のおかげで、任意の幾何学はFOLで扱える。
関連論文リスト
- Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
本稿では,ニューラルネットワーク,物理情報処理機械学習,およびPDEを解くための標準的な数値法を組み合わせた手法を提案する。
データのない方法で偏微分方程式をパラメトリックに解き、正確な感度を与えることができる。
本研究では, 不均一材料中の定常熱方程式に着目した。
論文 参考訳(メタデータ) (2024-07-04T21:23:12Z) - Integration of physics-informed operator learning and finite element
method for parametric learning of partial differential equations [0.0]
本稿では,偏微分方程式の解法として物理インフォームド・ディープラーニング手法を用いる手法を提案する。
その焦点は、相コントラストが顕著である不均一固体中の定常熱方程式である。
提案手法を標準有限要素法と比較し,正確かつ高速な予測法を示す。
論文 参考訳(メタデータ) (2024-01-04T17:01:54Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
球面幾何学の演算子を学習するための球面FNO(SFNO)を紹介する。
SFNOは、気候力学の機械学習に基づくシミュレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-06T16:27:17Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Self-Consistency of the Fokker-Planck Equation [117.17004717792344]
フォッカー・プランク方程式は、伊藤過程の密度進化を支配している。
地絡速度場は固定点方程式の解であることを示すことができる。
本稿では,この概念を利用して仮説速度場のポテンシャル関数を設計する。
論文 参考訳(メタデータ) (2022-06-02T03:44:23Z) - A physics and data co-driven surrogate modeling approach for temperature
field prediction on irregular geometric domain [12.264200001067797]
本研究では, 温度場予測のための新しい物理・データ共駆動サロゲートモデリング法を提案する。
数値計算により,本手法はより小さなデータセット上での精度予測を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2022-03-15T08:43:24Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
ランダムな初期条件を関連するPDE解に短時間でマッピングする無限次元演算子を学習するための効果的なフレームワークを提案する。
その後、訓練されたモデルを反復的に評価することにより、一連の初期条件にわたるグローバルな長期予測が得られる。
これは時間領域分解に対する新しいアプローチを導入し、正確な長期シミュレーションを実行するのに有効であることを示した。
論文 参考訳(メタデータ) (2021-06-09T20:46:17Z) - A Physics-Informed Machine Learning Approach for Solving Heat Transfer
Equation in Advanced Manufacturing and Engineering Applications [3.04585143845864]
導電性熱伝達偏微分方程式(PDE)を解くために物理インフォームドニューラルネットワークを開発した。
部品をオーブンで加熱する製造や工学の用途で用いられる。
論文 参考訳(メタデータ) (2020-09-28T18:53:00Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。