論文の概要: NCIDiff: Non-covalent Interaction-generative Diffusion Model for Improving Reliability of 3D Molecule Generation Inside Protein Pocket
- arxiv url: http://arxiv.org/abs/2405.16861v1
- Date: Mon, 27 May 2024 06:26:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 16:50:47.281779
- Title: NCIDiff: Non-covalent Interaction-generative Diffusion Model for Improving Reliability of 3D Molecule Generation Inside Protein Pocket
- Title(参考訳): NCIDiff:タンパク質ポケット内における3次元分子生成の信頼性向上のための非共有相互作用生成拡散モデル
- Authors: Joongwon Lee, Wonho Zhung, Woo Youn Kim,
- Abstract要約: 非共有結合パターン(NCI)はタンパク質-リガンド複合体全体の普遍的なパターンである。
提案モデルであるNCIDiffは,NCIタイプのタンパク質リガンドエッジと,サンプリング中にリガンド分子の3次元グラフを同時に認識する。
NCI生成戦略により,本モデルは信頼性の高いNCIを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in deep generative modeling have changed the paradigm of drug discovery. Among such approaches, target-aware methods that exploit 3D structures of protein pockets were spotlighted for generating ligand molecules with their plausible binding modes. While docking scores superficially assess the quality of generated ligands, closer inspection of the binding structures reveals the inconsistency in local interactions between a pocket and generated ligands. Here, we address the issue by explicitly generating non-covalent interactions (NCIs), which are universal patterns throughout protein-ligand complexes. Our proposed model, NCIDiff, simultaneously denoises NCI types of protein-ligand edges along with a 3D graph of a ligand molecule during the sampling. With the NCI-generating strategy, our model generates ligands with more reliable NCIs, especially outperforming the baseline diffusion-based models. We further adopted inpainting techniques on NCIs to further improve the quality of the generated molecules. Finally, we showcase the applicability of NCIDiff on drug design tasks for real-world settings with specialized objectives by guiding the generation process with desired NCI patterns.
- Abstract(参考訳): 深層生成モデリングの進歩は、薬物発見のパラダイムを変えてきた。
このようなアプローチの中で、タンパク質ポケットの3次元構造を利用するターゲットアウェア法は、可塑性結合モードでリガンド分子を生成するために注目された。
ドッキングスコアは生成リガンドの質を表面的に評価するが、結合構造の綿密な検査により、ポケットと生成リガンド間の局所的な相互作用の不整合が明らかになる。
ここでは、タンパク質-リガンド複合体全体の普遍的なパターンである非共有相互作用(NCI)を明示的に生成することで、この問題に対処する。
提案モデルであるNCIDiffは,NCIタイプのタンパク質リガンドエッジと,サンプリング中にリガンド分子の3次元グラフを同時に認識する。
NCI生成戦略により、我々のモデルはより信頼性の高いNCIを持つリガンドを生成する。
我々はさらに,NCIの塗布技術を採用し,生成分子の品質をさらに向上させた。
最後に,NCIDiffのドラッグデザインタスクへの適用性について述べる。
関連論文リスト
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design [81.95343363178662]
原子は分離違反を避けるために 最小の対距離を維持する必要がある
NucleusDiff は原子核と周囲の電子雲の間の相互作用を距離制約によってモデル化する。
違反率は1000%まで減少し、結合親和性は22.16%まで向上し、構造に基づく薬物設計の最先端モデルを上回る。
論文 参考訳(メタデータ) (2024-09-16T08:42:46Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
論文 参考訳(メタデータ) (2024-03-21T02:44:08Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure [0.0]
拡散生成モデルは3次元分子構造に直接作用する。
分子構造の潜在表現を学習するための新しいGNNアーキテクチャを提案する。
本モデルでは,全原子タンパク質の表現に匹敵する性能を示しながら,推論時間を3倍に短縮した。
論文 参考訳(メタデータ) (2023-11-22T15:32:31Z) - Leveraging Side Information for Ligand Conformation Generation using
Diffusion-Based Approaches [12.71967232020327]
リガンド分子コンホメーション生成は、薬物発見において重要な課題である。
この問題を解決するためにディープラーニングモデルが開発されている。
これらのモデルはしばしば、本質的な側情報がないため、意味のある構造やランダム性を欠いたコンフォメーションを生成する。
論文 参考訳(メタデータ) (2023-08-02T09:56:47Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
従来の研究は通常、原子の要素タイプと3次元座標を1つずつ生成する自己回帰的な方法で原子を生成する。
現実世界の分子系では、分子全体の原子間の相互作用が大域的であり、原子間のエネルギー関数が結合する。
本研究では、標的タンパク質に基づく分子3次元構造の生成拡散モデルを構築し、非自己回帰的に全原子レベルで構築する。
論文 参考訳(メタデータ) (2022-11-21T07:02:15Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
構造に基づくde novo法は、薬物と標的の相互作用を深く生成するアーキテクチャに組み込むことによって、アクティブなデータ不足を克服することができる。
本稿では,医薬品発見のためのタンパク質配列に基づく拡張学習モデルについて紹介する。
概念実証として、RLモデルを用いて分子を4つのターゲットに設計した。
論文 参考訳(メタデータ) (2022-08-14T10:41:52Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
本稿では,関係グラフアーキテクチャ内の3次元タンパク質-リガンド接触を符号化したグラフベース生成モデリング技術を提案する。
これらのモデルは、活性特異的な分子生成を可能にする条件付き変分オートエンコーダと、ターゲットの結合ポケット内の分子相互作用の予測を提供する配置接触生成を組み合わせる。
論文 参考訳(メタデータ) (2022-04-05T22:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。