論文の概要: Spatio-Spectral Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2405.19121v1
- Date: Wed, 29 May 2024 14:28:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:51:10.484563
- Title: Spatio-Spectral Graph Neural Networks
- Title(参考訳): 比スペクトルグラフニューラルネットワーク
- Authors: Simon Geisler, Arthur Kosmala, Daniel Herbst, Stephan Günnemann,
- Abstract要約: 比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
- 参考スコア(独自算出の注目度): 50.277959544420455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial Message Passing Graph Neural Networks (MPGNNs) are widely used for learning on graph-structured data. However, key limitations of l-step MPGNNs are that their "receptive field" is typically limited to the l-hop neighborhood of a node and that information exchange between distant nodes is limited by over-squashing. Motivated by these limitations, we propose Spatio-Spectral Graph Neural Networks (S$^2$GNNs) -- a new modeling paradigm for Graph Neural Networks (GNNs) that synergistically combines spatially and spectrally parametrized graph filters. Parameterizing filters partially in the frequency domain enables global yet efficient information propagation. We show that S$^2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs. Further, rethinking graph convolutions at a fundamental level unlocks new design spaces. For example, S$^2$GNNs allow for free positional encodings that make them strictly more expressive than the 1-Weisfeiler-Lehman (WL) test. Moreover, to obtain general-purpose S$^2$GNNs, we propose spectrally parametrized filters for directed graphs. S$^2$GNNs outperform spatial MPGNNs, graph transformers, and graph rewirings, e.g., on the peptide long-range benchmark tasks, and are competitive with state-of-the-art sequence modeling. On a 40 GB GPU, S$^2$GNNs scale to millions of nodes.
- Abstract(参考訳): 空間メッセージパッシンググラフニューラルネットワーク(MPGNN)は,グラフ構造化データの学習に広く利用されている。
しかし、LステップMPGNNの鍵となる制限は、その「受容野」が通常ノードのlホップ近傍に限られており、遠方のノード間の情報交換はオーバーカッシングによって制限されていることである。
これらの制限により、空間的およびスペクトル的にパラメータ化されたグラフフィルタを相乗的に組み合わせたグラフニューラルネットワーク(GNN)の新しいモデリングパラダイムである、比スペクトルグラフニューラルネットワーク(S$^2$GNNs)を提案する。
周波数領域の一部のパラメータ化フィルタは、大域的かつ効率的な情報伝達を可能にする。
S$^2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
さらに、基本的なレベルでグラフの畳み込みを再考することで、新しいデザイン空間が解放される。
例えば、S$^2$GNNは1-Weisfeiler-Lehman (WL) テストよりも厳密に表現できる自由位置符号化を可能にする。
さらに、汎用S$^2$GNNを得るために、有向グラフに対するスペクトルパラメトリゼーションフィルタを提案する。
S$2$GNNsは、空間MPGNN、グラフトランスフォーマー、グラフリワイア(例えば、ペプチド長範囲ベンチマークタスク)より優れ、最先端のシーケンスモデリングと競合する。
40GBのGPUでは、S$^2$GNNは数百万のノードにスケールする。
関連論文リスト
- Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - From Local to Global: Spectral-Inspired Graph Neural Networks [28.858773653743075]
グラフニューラルネットワーク(GNN)は、非ユークリッドデータのための強力なディープラーニング手法である。
MPNNは、局所グラフ地区の信号を集約して結合するメッセージパッシングアルゴリズムである。
MPNNは、過密や過密といった問題に悩まされる可能性がある。
論文 参考訳(メタデータ) (2022-09-24T17:19:00Z) - Transferability Properties of Graph Neural Networks [125.71771240180654]
グラフニューラルネットワーク(GNN)は、中規模グラフでサポートされているデータから表現を学ぶのに成功している。
適度な大きさのグラフ上でGNNを訓練し、それらを大規模グラフに転送する問題について検討する。
その結果, (i) グラフサイズに応じて転送誤差が減少し, (ii) グラフフィルタは非線型性の散乱挙動によってGNNにおいて緩和されるような転送可能性-識別可能性トレードオフを有することがわかった。
論文 参考訳(メタデータ) (2021-12-09T00:08:09Z) - $p$-Laplacian Based Graph Neural Networks [27.747195341003263]
グラフネットワーク(GNN)は、グラフ上の半教師付きノード分類において優れた性能を示す。
我々は、離散正規化フレームワークからメッセージパッシング機構を導出する$p$GNNと呼ばれる新しい$p$LaplacianベースのGNNモデルを提案する。
新たなメッセージパッシング機構は低域通過フィルタと高域通過フィルタを同時に動作させることで,ホモ親和性グラフとヘテロ親和性グラフの両方に対して$p$GNNを有効にすることができることを示す。
論文 参考訳(メタデータ) (2021-11-14T13:16:28Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
ローカルグラフパラメータは、任意のグラフニューラルネットワーク(GNN)アーキテクチャに追加することができる。
我々の結果は、有限モデル理論と有限変数論理の深い結果とGNNを結びつける。
論文 参考訳(メタデータ) (2021-06-12T07:43:51Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z) - Generalization and Representational Limits of Graph Neural Networks [46.20253808402385]
ローカル情報に完全に依存するグラフニューラルネットワーク(GNN)では,いくつかの重要なグラフ特性を計算できないことを示す。
メッセージパッシングGNNに対する最初のデータ依存一般化境界を提供する。
私たちのバウンダリは、既存のVC次元ベースのGNN保証よりもはるかに厳格で、リカレントニューラルネットワークのRademacherバウンダリと同等です。
論文 参考訳(メタデータ) (2020-02-14T18:10:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。