論文の概要: Fast training of accurate physics-informed neural networks without gradient descent
- arxiv url: http://arxiv.org/abs/2405.20836v2
- Date: Tue, 30 Sep 2025 15:20:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:03.818999
- Title: Fast training of accurate physics-informed neural networks without gradient descent
- Title(参考訳): 勾配降下を伴わない高精度物理情報ニューラルネットワークの高速学習
- Authors: Chinmay Datar, Taniya Kapoor, Abhishek Chandra, Qing Sun, Erik Lien Bolager, Iryna Burak, Anna Veselovska, Massimo Fornasier, Felix Dietrich,
- Abstract要約: 時空分離の原理に基づく新しいPINNであるFrozen-PINNを提案する。
8つのPDEベンチマークにおいて、Frozen-PINNは最先端のPINNよりも優れたトレーニング効率と精度を達成する。
- 参考スコア(独自算出の注目度): 4.411766183442036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving time-dependent Partial Differential Equations (PDEs) is one of the most critical problems in computational science. While Physics-Informed Neural Networks (PINNs) offer a promising framework for approximating PDE solutions, their accuracy and training speed are limited by two core barriers: gradient-descent-based iterative optimization over complex loss landscapes and non-causal treatment of time as an extra spatial dimension. We present Frozen-PINN, a novel PINN based on the principle of space-time separation that leverages random features instead of training with gradient descent, and incorporates temporal causality by construction. On eight PDE benchmarks, including challenges such as extreme advection speeds, shocks, and high dimensionality, Frozen-PINNs achieve superior training efficiency and accuracy over state-of-the-art PINNs, often by several orders of magnitude. Our work addresses longstanding training and accuracy bottlenecks of PINNs, delivering quickly trainable, highly accurate, and inherently causal PDE solvers, a combination that prior methods could not realize. Our approach challenges the reliance of PINNs on stochastic gradient-descent-based methods and specialized hardware, leading to a paradigm shift in PINN training and providing a challenging benchmark for the community.
- Abstract(参考訳): 時間依存偏微分方程式 (PDE) は計算科学において最も重要な問題の1つである。
物理情報ニューラルネットワーク(PINN)はPDEソリューションを近似するための有望なフレームワークを提供するが、その精度とトレーニング速度は2つのコアバリアによって制限されている。
本研究では,時間的分離の原理に基づく新しいPINNであるFrozen-PINNについて述べる。
極端な対流速度、衝撃、高次元性といった課題を含む8つのPDEベンチマークにおいて、Frozen-PINNは最先端のPINNよりも優れたトレーニング効率と精度を達成し、しばしば数桁のオーダーで達成する。
我々の研究は、PINNの長年にわたるトレーニングと精度のボトルネックに対処し、迅速なトレーニングが可能で、高度に正確で、本質的に因果的なPDE解決器を提供する。
提案手法は,確率的勾配差に基づく手法と特殊なハードウェアへのPINNの依存に挑戦し,PINNトレーニングのパラダイムシフトと,コミュニティに挑戦的なベンチマークを提供する。
関連論文リスト
- Global Convergence of Adjoint-Optimized Neural PDEs [0.0]
本研究では,ニューラルネットワークを用いたPDEモデルの学習において,隠れた単位数と学習時間の両方が無限大となるような条件下での随伴勾配勾配勾配最適化手法の収束性について検討する。
具体的には、ニューラルネットワークを元項に埋め込んだ非線形放物型PDEの一般クラスに対して、ターゲットデータ(すなわち、大域的最小化器)に対する訓練されたニューラルネットワークPDEソリューションを証明する。
大域収束証明は有限次元収束解析では遭遇しないユニークな数学的挑戦を示す。
論文 参考訳(メタデータ) (2025-06-16T16:00:00Z) - Solving Partial Differential Equations with Random Feature Models [1.3597551064547502]
PDEを効率的に解くためのランダムな特徴ベースのフレームワークを提案する。
多数のコロケーションポイントを持つ問題に直面する最先端の解法とは対照的に,提案手法は計算複雑性を低減させる。
論文 参考訳(メタデータ) (2024-12-31T05:48:31Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics [5.380276949049726]
ディープラーニング(DL)に基づく高次元偏微分方程式の効率的な解法の開発と解析
理論的にも数値的にも,新しい安定かつ高精度なスペクトルコロケーション法と競合できることを示す。
論文 参考訳(メタデータ) (2024-06-03T17:16:11Z) - Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
我々はPDEをニューラルネットワークとして表現し、物理情報ニューラルネットワーク(PINN)に似た中間状態表現を用いる。
本稿では,この制約付き最適化問題を解くために,ペナルティ法と広く利用されている信頼領域障壁法を提案する。
バーガーズ方程式とコルトヴェーグ・ド・ヴライス方程式に関する我々の結果は、後者の制約付き手法がペナルティ法より優れていることを示している。
論文 参考訳(メタデータ) (2024-05-30T01:55:44Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [12.385926494640932]
本稿では,グラフニューラルネットワークの基本値から偏微分方程式を解くためのPhyGNNetを提案する。
特に、計算領域を正規グリッドに分割し、グリッド上の偏微分演算子を定義し、PhyGNNetモデルを構築する最適化のためにネットワークのpde損失を構築する。
論文 参考訳(メタデータ) (2022-08-07T13:33:34Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
本稿では,未知多様体上の楕円型PDEを解くためのメッシュフリー計算フレームワークと機械学習理論を提案する。
提案したNNソルバは,新しいデータポイント上の一般化とほぼ同一の誤差を持つ新しいデータポイント上でPDEを強固に一般化できることを示す。
論文 参考訳(メタデータ) (2021-06-12T03:55:15Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。