論文の概要: Noise-adapted qudit codes for amplitude-damping noise
- arxiv url: http://arxiv.org/abs/2406.02444v1
- Date: Tue, 4 Jun 2024 16:07:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:30:46.783652
- Title: Noise-adapted qudit codes for amplitude-damping noise
- Title(参考訳): 振幅減衰雑音に対する雑音適応Qudit符号
- Authors: Sourav Dutta, Debjyoti Biswas, Prabha Mandayam,
- Abstract要約: 本稿では,振幅減衰騒音に対する対策として,Qudit誤り訂正符号のクラスを提案する。
具体的には、全単一量子の誤り訂正条件を満たす4量子符号のクラスと、数個の2量子減衰誤りを満足する2量子符号を構築する。
for the $d=2$ case, our QEC scheme is similar to the known example of the $4$-qubit code and the associated syndrome-based recovery。
- 参考スコア(独自算出の注目度): 6.320926638892934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction (QEC) plays a critical role in preventing information loss in quantum systems and provides a framework for reliable quantum computation. Identifying quantum codes with nice code parameters for physically motivated noise models remains an interesting challenge. Going beyond qubit codes, here we propose a class of qudit error correcting codes tailored to protect against amplitude-damping noise. Specifically, we construct a class of four-qudit codes that satisfies the error correction conditions for all single-qudit and a few two-qudit damping errors up to the leading order in the damping parameter $\gamma$. We devise a protocol to extract syndromes that identify this set of errors unambiguously, leading to a noise-adapted recovery scheme that achieves a fidelity loss of $\cO(\gamma^{2})$. For the $d=2$ case, our QEC scheme is identical to the known example of the $4$-qubit code and the associated syndrome-based recovery. We also assess the performance of our class of codes using the Petz recovery map and note some interesting deviations from the qubit case.
- Abstract(参考訳): 量子誤り訂正(QEC)は、量子システムにおける情報損失を防ぐ重要な役割を担い、信頼性の高い量子計算のためのフレームワークを提供する。
物理的に動機付けられたノイズモデルのための優れたコードパラメータを持つ量子コードを特定することは、興味深い課題である。
ここでは、量子ビット符号を超越して、振幅減衰ノイズから保護するために調整されたクディット誤り訂正符号のクラスを提案する。
具体的には、全単一量子の誤り訂正条件を満たす4量子符号のクラスを構築し、減衰パラメータ$\gamma$の先頭の順序まで誤差を減衰させる。
我々は、この一連のエラーをあいまいに識別するシンドロームを抽出するプロトコルを考案し、ノイズ適応型回復スキームが$\cO(\gamma^{2})$の忠実度損失を達成した。
for the $d=2$ case, our QEC scheme is similar to the known example of the $4$-qubit code and the associated syndrome-based recovery。
また、Petzリカバリマップを用いて、私たちのクラスのコードの性能を評価し、qubitの場合から興味深い逸脱がいくつかあることに注意する。
関連論文リスト
- Variational Graphical Quantum Error Correction Codes: adjustable codes from topological insights [1.3999481573773074]
本稿では,変分量子量子誤り訂正符号(VGQEC)と呼ばれる新しい種類の量子誤り訂正符号を開発する。
VGQEC符号は、符号の誤り訂正能力を決定する上で重要な役割を果たす調整可能な構成パラメータを備えている。
論文 参考訳(メタデータ) (2024-10-03T15:47:48Z) - Smallest quantum codes for amplitude damping noise [6.58877386288094]
振幅減衰(AD)ノイズを補正する最小の量子誤り訂正符号(QEC)について述べる。
我々はこの構成を一般化し、任意の順序でADノイズを補正するコード群を作成する。
論文 参考訳(メタデータ) (2024-09-30T18:55:09Z) - Fault-tolerant noise guessing decoding of quantum random codes [0.0]
本稿では,不完全復号処理が可能な量子乱数線形符号(QRLC)のデコーダを提案する。
QRLCの耐故障特性を新しいノイズガッシング復号法を用いて解析する。
論文 参考訳(メタデータ) (2024-07-01T17:54:23Z) - Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
並列ビットフリップデコーダのDFRを高精度に推定する手法を提案する。
本研究は,本症候群のモデル化およびシミュレーションによる重み比較,第1イテレーション終了時の誤りビット分布の誤検出,復号化復号化率(DFR)について検証した。
論文 参考訳(メタデータ) (2024-01-30T11:40:24Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Tailored XZZX codes for biased noise [60.12487959001671]
我々は,XZX型安定化器発生器を有する符号群について検討した。
これらのXZZX符号は、バイアスノイズに合わせると、非常に量子効率が高いことを示す。
論文 参考訳(メタデータ) (2022-03-30T17:26:31Z) - Adaptive quantum codes: constructions, applications and fault tolerance [0.0]
完全量子符号は、QEC以外のシナリオに対する顕著な改善を観測するために、少なくとも5つの物理量子ビットを必要とする。
本研究では,高い忠実度を有する1次元スピンチェーン上で,あるサイトから他方への量子情報の伝達を可能にする適応QECプロトコルを提案する。
論文 参考訳(メタデータ) (2022-03-07T10:06:16Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
実効論理ノイズに対する再正規化として,読み出し量子ビット上の測定誤差が現れることを示す。
実効的論理ノイズの計算複雑性を,数桁のオーダーで低減する一般手法を導出する。
論文 参考訳(メタデータ) (2020-03-23T19:40:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。