論文の概要: VoxNeuS: Enhancing Voxel-Based Neural Surface Reconstruction via Gradient Interpolation
- arxiv url: http://arxiv.org/abs/2406.07170v1
- Date: Tue, 11 Jun 2024 11:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 16:13:39.203691
- Title: VoxNeuS: Enhancing Voxel-Based Neural Surface Reconstruction via Gradient Interpolation
- Title(参考訳): VoxNeuS: 勾配補間によるVoxel-based Neural Surfaceの再構築
- Authors: Sidun Liu, Peng Qiao, Zongxin Ye, Wenyu Li, Yong Dou,
- Abstract要約: 計算およびメモリ効率のよいニューラルサーフェス再構成のための軽量なサーフェス再構成法であるVoxNeuSを提案する。
トレーニングプロセス全体は15分で、1つの2080ti GPU上で3GB未満のメモリを必要とする。
- 参考スコア(独自算出の注目度): 10.458776364195796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Surface Reconstruction learns a Signed Distance Field~(SDF) to reconstruct the 3D model from multi-view images. Previous works adopt voxel-based explicit representation to improve efficiency. However, they ignored the gradient instability of interpolation in the voxel grid, leading to degradation on convergence and smoothness. Besides, previous works entangled the optimization of geometry and radiance, which leads to the deformation of geometry to explain radiance, causing artifacts when reconstructing textured planes. In this work, we reveal that the instability of gradient comes from its discontinuity during trilinear interpolation, and propose to use the interpolated gradient instead of the original analytical gradient to eliminate the discontinuity. Based on gradient interpolation, we propose VoxNeuS, a lightweight surface reconstruction method for computational and memory efficient neural surface reconstruction. Thanks to the explicit representation, the gradient of regularization terms, i.e. Eikonal and curvature loss, are directly solved, avoiding computation and memory-access overhead. Further, VoxNeuS adopts a geometry-radiance disentangled architecture to handle the geometry deformation from radiance optimization. The experimental results show that VoxNeuS achieves better reconstruction quality than previous works. The entire training process takes 15 minutes and less than 3 GB of memory on a single 2080ti GPU.
- Abstract(参考訳): ニューラルサーフェス・コンストラクションは、多視点画像から3次元モデルを再構成するために、符号付き距離場~(SDF)を学習する。
以前の研究では、効率を改善するためにボクセルに基づく明示的な表現を採用していた。
しかし、彼らはボクセル格子における補間の勾配不安定さを無視し、収束と滑らかさの低下につながった。
さらに、以前の研究は幾何と放射率の最適化を絡み合わせることで、放射率を説明する幾何学の変形を引き起こし、テクスチャ化された平面を再構築する際に人工物を引き起こす。
本研究では, 線形補間における勾配の不連続性から勾配の不安定性が生じることを明らかにするとともに, その不連続性を排除するために, オリジナルの解析勾配の代わりに補間勾配を用いることを提案する。
勾配補間に基づく計算およびメモリ効率の良いニューラルサーフェス再構成のための軽量表面再構成法であるVoxNeuSを提案する。
明示的な表現により、正規化項の勾配、すなわち等角線と曲率損失を直接解き、計算やメモリアクセスオーバーヘッドを回避できる。
さらに、VoxNeuSは、放射率最適化による幾何学的変形を処理するために、幾何学的放射分散アーキテクチャを採用している。
実験結果から,VoxNeuSは従来よりも再現性が高いことがわかった。
トレーニングプロセス全体は15分で、1つの2080ti GPU上で3GB未満のメモリを必要とする。
関連論文リスト
- Geometry Field Splatting with Gaussian Surfels [23.412129038089326]
我々は、最近の研究で提案された不透明曲面の幾何学的場を利用して、体積密度に変換することができる。
ガウス核やウェーバを体積よりも幾何場に適応させ、不透明な固体の正確な再構成を可能にする。
広範に使用されているデータセット上で再構成された3次元表面の質が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2024-11-26T03:07:05Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
微分可能放射場 eg NeRF を利用して、新しいビューレンダリングを生成するとともに、詳細な3次元表面を再構成する。
本研究では,SDFから放射場への射影を一様等間隔のアイコニカル正規化で定式化し,最適化することを考えると,光度重み付け係数を改良する。
提案する textitRaNeuS は,合成データと実データの両方で広く評価されている。
論文 参考訳(メタデータ) (2024-06-14T07:54:25Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
ガウススプレイティング最適化の過程で、その構造が意図的に保存されていない場合、シーンの幾何学は徐々に悪化する。
我々はこの問題を緩和するためにGeoGaussianと呼ばれる新しいアプローチを提案する。
提案するパイプラインは、新しいビュー合成と幾何再構成において最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-03-17T20:06:41Z) - GradientSurf: Gradient-Domain Neural Surface Reconstruction from RGB
Video [0.0]
GradientSurfはモノクロRGBビデオからのリアルタイム表面再構成のための新しいアルゴリズムである。
ポアソン表面再構成にインスパイアされた提案手法は, 表面, 体積, 配向点雲の密結合に基づく。
屋内の景観復元の課題として, 提案手法は曲面を曲面で再現し, より詳細に再現できることを示した。
論文 参考訳(メタデータ) (2023-10-09T04:54:30Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
本稿では2次元画像からボリュームレンダリングにより任意の位相で表面を再構成する新しい手法であるNeuralUDFを提案する。
本稿では,表面をUDF(Unsigned Distance Function)として表現し,ニューラルUDF表現を学習するための新しいボリュームレンダリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-25T15:21:45Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
そこで我々はD-NeuSを提案する。D-NeuSは、微細な幾何学的詳細を復元できるボリュームレンダリング型ニューラル暗示表面再構成法である。
我々は,SDFゼロクロスの補間により表面点に多視点の特徴的整合性を付与する。
本手法は,高精度な表面を細部で再構成し,その性能を向上する。
論文 参考訳(メタデータ) (2022-11-21T10:06:09Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - Voxurf: Voxel-based Efficient and Accurate Neural Surface Reconstruction [142.61256012419562]
本稿では,ボクセルをベースとした表面再構成手法であるVoxurfを提案する。
ボクサーフは,(1)コヒーレントな粗い形状を達成し,細部を連続的に再現する2段階の訓練手順,2)色-幾何学的依存性を維持する2色ネットワーク,3)ボクセル間の情報伝達を促進する階層的幾何学的特徴などを通じて,上記の課題に対処する。
論文 参考訳(メタデータ) (2022-08-26T14:48:02Z) - Improved surface reconstruction using high-frequency details [44.73668037810989]
ニューラルレンダリングにおける表面再構成の品質向上のための新しい手法を提案する。
以上の結果から,本手法は高頻度表面の細部を再構築し,現状よりも優れた表面の再現性が得られることがわかった。
論文 参考訳(メタデータ) (2022-06-15T23:46:48Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
学習に基づく3次元再構成に対応する3次元形状表現は、機械学習とコンピュータグラフィックスにおいてオープンな問題である。
ニューラル3D再構成に関するこれまでの研究は、利点だけでなく、ポイントクラウド、ボクセル、サーフェスメッシュ、暗黙の関数表現といった制限も示していた。
Deformable Tetrahedral Meshes (DefTet) を, ボリューム四面体メッシュを再構成問題に用いるパラメータ化として導入する。
論文 参考訳(メタデータ) (2020-11-03T02:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。