論文の概要: Finite-difference-informed graph network for solving steady-state incompressible flows on block-structured grids
- arxiv url: http://arxiv.org/abs/2406.10534v2
- Date: Mon, 14 Oct 2024 07:06:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:03:40.221715
- Title: Finite-difference-informed graph network for solving steady-state incompressible flows on block-structured grids
- Title(参考訳): ブロック構造格子上の定常非圧縮性流れを解くための有限差インフォームドグラフネットワーク
- Authors: Yiye Zou, Tianyu Li, Lin Lu, Jingyu Wang, Shufan Zou, Laiping Zhang, Xiaogang Deng,
- Abstract要約: blueTextA graph convolution-based FD method (GC-FDM) は、ラベルのない物理制約でグラフネットワークを訓練するために提案されている。
様々な境界条件下でのCFDソルバと比較した場合,提案手法は速度場予測における相対誤差を10~3ドルの順序で達成する。
提案手法は,物理インフォームドニューラルネットワークと比較してトレーニングコストを約20%削減する。
- 参考スコア(独自算出の注目度): 15.388243390051308
- License:
- Abstract: Advances in deep learning have enabled physics-informed neural networks to solve partial differential equations. Numerical differentiation using the finite-difference (FD) method is efficient in physics-constrained designs, even in parameterized settings. In traditional computational fluid dynamics(CFD), body-fitted block-structured grids are often employed for complex flow cases when obtaining FD solutions. However, convolution operators in convolutional neural networks for FD are typically limited to single-block grids. To address this issue, \blueText{graphs and graph networks are used} to learn flow representations across multi-block-structured grids. \blueText{A graph convolution-based FD method (GC-FDM) is proposed} to train graph networks in a label-free physics-constrained manner, enabling differentiable FD operations on unstructured graph outputs. To demonstrate model performance from single- to multi-block-structured grids, \blueText{the parameterized steady incompressible Navier-Stokes equations are solved} for a lid-driven cavity flow and the flows around single and double circular cylinder configurations. When compared to a CFD solver under various boundary conditions, the proposed method achieves a relative error in velocity field predictions on the order of $10^{-3}$. Furthermore, the proposed method reduces training costs by approximately 20\% compared to a physics-informed neural network. \blueText{To} further verify the effectiveness of GC-FDM in multi-block processing, \blueText{a 30P30N airfoil geometry is considered} and the \blueText{predicted} results are reasonable compared with those given by CFD. \blueText{Finally, the applicability of GC-FDM to three-dimensional (3D) case is tested using a 3D cavity geometry.
- Abstract(参考訳): ディープラーニングの進歩により、物理インフォームドニューラルネットワークは偏微分方程式を解くことができる。
有限差分法 (FD) を用いた数値微分は, パラメータ化設定においても, 物理制約設計において効率的である。
従来の計算流体力学(CFD)では、FD溶液を得る際に複雑な流れの場合、ボディフィットのブロック構造格子が用いられることが多い。
しかし、FDの畳み込みニューラルネットワークにおける畳み込み演算子は、通常は単一ブロックグリッドに限られる。
この問題に対処するために、マルチブロック構造グリッド間のフロー表現を学習するために、 \blueText{graphs と Graph Network が使用される。
ラベルのない物理制約でグラフネットワークをトレーニングし,非構造化グラフ出力上での微分可能なFD操作を可能にする。
単層から多層構造グリッドへのモデル性能を示すため, 単層および二重円柱形状のキャビティフローと流れに対するパラメータ化非圧縮性ナビエ・ストークス方程式を解いた。
様々な境界条件下でのCFDソルバと比較して,提案手法は速度場予測における相対誤差を10^{-3}$の順序で達成する。
さらに,提案手法は,物理インフォームドニューラルネットワークと比較してトレーニングコストを約20 %削減する。
さらに, マルチブロック処理におけるGC-FDMの有効性を検証し, また, CFDと比較すると, 航空機の翼形状について検討した。
以上より, GC-FDMを3次元の3次元空洞形状に応用できるかどうかを3次元空洞形状を用いて検証した。
関連論文リスト
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
本稿では,メッシュ領域上での定常流体力学シミュレーションの代理モデルを学習する手法を提案する。
提案したモデルは, 異なる流れ条件に対して非構造領域に直接適用することができる。
顕著なことに、RANS超音速翼データセット上の高忠実度解法よりも5桁高速な推論を行うことができる。
論文 参考訳(メタデータ) (2024-07-29T11:48:44Z) - Solving the Discretised Multiphase Flow Equations with Interface
Capturing on Structured Grids Using Machine Learning Libraries [0.6299766708197884]
本稿では,機械学習ライブラリのツールと手法を用いて,離散化した多相流方程式を解く。
はじめて、(訓練されていない)畳み込みニューラルネットワークに基づくアプローチを用いて、多相流の有限要素判別を解くことができる。
論文 参考訳(メタデータ) (2024-01-12T18:42:42Z) - Identification of vortex in unstructured mesh with graph neural networks [0.0]
本稿では,非構造化メッシュ上でのCFD結果の渦を特定するために,U-Netアーキテクチャを用いたグラフニューラルネットワーク(GNN)に基づくモデルを提案する。
2次元CFDメッシュにおける渦領域をラベル付けするための渦自動ラベル法を提案する。
論文 参考訳(メタデータ) (2023-11-11T12:10:16Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep
Convolutional Neural Networks [5.380828749672078]
DeepCFDは畳み込みニューラルネットワーク(CNN)ベースのモデルであり、非一様定常層流問題に対する解を効率的に近似する。
DeepCFDを用いることで、標準CFD手法と比較して最大3桁の高速化を低エラー率で実現した。
論文 参考訳(メタデータ) (2020-04-19T12:00:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。