Chip-scale generation of 60-mode continuous-variable cluster states
- URL: http://arxiv.org/abs/2406.10715v1
- Date: Sat, 15 Jun 2024 18:53:52 GMT
- Title: Chip-scale generation of 60-mode continuous-variable cluster states
- Authors: Ze Wang, Kangkang Li, Yue Wang, Xin Zhou, Yinke Cheng, Boxuan Jing, Fengxiao Sun, Jincheng Li, Zhilin Li, Qihuang Gong, Qiongyi He, Bei-Bei Li, Qi-Fan Yang,
- Abstract summary: We demonstrate 60-mode cluster states in a chip-based optical microresonator pumped by chromatic lasers.
We realize one- and two-dimensional cluster states with up to 60 qumodes.
Our work provides a compact and scalable platform for constructing large-scale entangled quantum resources.
- Score: 14.229258017996521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing the number of entangled entities is crucial for achieving exponential computational speedups and secure quantum networks. Despite recent progress in generating large-scale entanglement through continuous-variable (CV) cluster states, translating these technologies to photonic chips has been hindered by decoherence, limiting the number of entangled entities to 8. Here, we demonstrate 60-mode CVcluster states in a chip-based optical microresonator pumped by chromatic lasers. Resonantly-enhanced four-wave mixing processes establish entanglement between equidistant spectral quantum modes (qumodes), forming a quantum analogue of optical frequency combs. Decoherence is minimized to achieve unprecedented two-mode raw squeezing (>3 dB) from a chip. Using bichromatic and trichromatic pump lasers, we realize one- and two-dimensional cluster states with up to 60 qumodes. Our work provides a compact and scalable platform for constructing large-scale entangled quantum resources, which are appealing for performing computational and communicational tasks with quantum advantages.
Related papers
- A scalable cavity-based spin-photon interface in a photonic integrated
circuit [0.15178488157371034]
We show integration of nanophotonic cavities containing tin-vacancy (SnV) centers in a photonic integrated circuit (PIC)
We find with near-term improvements this multiplexed architecture can enable high-fidelity quantum state transfer.
arXiv Detail & Related papers (2024-02-28T05:26:32Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Deterministic Generation of Multidimensional Photonic Cluster States
with a Single Quantum Emitter [1.2233362977312945]
We present an experimental implementation in the microwave domain of a resource-efficient scheme for the deterministic generation of 2D photonic cluster states.
By utilizing a coupled resonator array as a slow-light waveguide, a single flux-tunable transmon qubit as a quantum emitter, and a second auxiliary transmon as a switchable mirror, we achieve rapid, shaped emission of entangled photon wavepackets.
We leverage these capabilities to generate a 2D cluster state of four photons with 70% fidelity, as verified by tomographic reconstruction of the quantum state.
arXiv Detail & Related papers (2022-06-21T02:08:18Z) - Robust quantum-network memory based on spin qubits in isotopically
engineered diamond [0.0]
We show that a single 13C spin in isotopically engineered diamond offers a long-lived quantum memory that is robust to the optical link operation of an NV centre.
Our results pave the way for test-bed quantum networks capable of investigating complex algorithms and error correction.
arXiv Detail & Related papers (2021-11-18T16:13:45Z) - Massively-multiplexed generation of Bell-type entanglement using a
quantum memory [0.0]
High-rate generation of hybrid photon-matter entanglement remains a fundamental building block of quantum network architectures.
We experimentally demonstrate the generation of bipartite polarization-entangled photonic states across more than 500 modes.
The ability to shape hybrid entanglement between the polarization and wavevector degrees of freedom provides not only multiplexing capabilities but also brings prospects for novel protocols.
arXiv Detail & Related papers (2021-03-15T10:52:32Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Near-degenerate quadrature-squeezed vacuum generation on a
silicon-nitride chip [54.87128096861778]
In this Letter, we demonstrate the generation of quadrature-phase squeezed states in the radio-frequency carrier sideband using a small-footprint silicon-nitride microresonator with a dual-pumped four-wave-mixing process.
It is critical to account for the nonlinear behavior of the pump fields to properly predict the squeezing that can be generated in this system.
arXiv Detail & Related papers (2020-02-04T01:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.