論文の概要: Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
- arxiv url: http://arxiv.org/abs/2405.19019v1
- Date: Wed, 29 May 2024 12:01:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:20:29.677112
- Title: Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
- Title(参考訳): 物理を考慮した多スケールパラメトリックPDEのためのニューラルインプリシット解法とその異種媒質への応用
- Authors: Matthaios Chatzopoulos, Phaedon-Stelios Koutsourelakis,
- Abstract要約: パラメタライズされた部分微分方程式(PDE)のためのサロゲート学習のための新しいデータ駆動型フレームワークを提案する。
確率論的学習目的(probabilistic, learning objective)は、重み付けされた残留物を用いてPDEを探索し、仮想データのソースを提供する。
これは、物理を意識した暗黙の解法と組み合わせられ、元のPDEのより粗い、離散化されたバージョンで構成されている。
- 参考スコア(独自算出の注目度): 1.8416014644193066
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose Physics-Aware Neural Implicit Solvers (PANIS), a novel, data-driven framework for learning surrogates for parametrized Partial Differential Equations (PDEs). It consists of a probabilistic, learning objective in which weighted residuals are used to probe the PDE and provide a source of {\em virtual} data i.e. the actual PDE never needs to be solved. This is combined with a physics-aware implicit solver that consists of a much coarser, discretized version of the original PDE, which provides the requisite information bottleneck for high-dimensional problems and enables generalization in out-of-distribution settings (e.g. different boundary conditions). We demonstrate its capability in the context of random heterogeneous materials where the input parameters represent the material microstructure. We extend the framework to multiscale problems and show that a surrogate can be learned for the effective (homogenized) solution without ever solving the reference problem. We further demonstrate how the proposed framework can accommodate and generalize several existing learning objectives and architectures while yielding probabilistic surrogates that can quantify predictive uncertainty.
- Abstract(参考訳): パラメタライズされた部分微分方程式(PDE)のサロゲートを学習するための新しいデータ駆動型フレームワークであるPhilipics-Aware Neural Implicit Solvers (PANIS)を提案する。
確率論的学習目的(probabilistic, learning objective)は、重み付け残差を用いてPDEを探索し、実際のPDEを解決する必要のないデータソースを提供する。
これは物理を意識した暗黙の解法と組み合わされ、これは元のPDEのより粗い、離散化されたバージョンからなり、高次元問題に対して必要な情報ボトルネックを提供し、分配外条件(例えば、異なる境界条件)での一般化を可能にする。
入力パラメータが材料ミクロ構造を表すランダムな異種材料のコンテキストにおいて,その機能を示す。
フレームワークをマルチスケールに拡張し、参照問題を解くことなく、効果的な(均質化された)ソリューションについてサロゲートを学習できることを示します。
さらに,提案するフレームワークが,予測の不確実性を定量化可能な確率的サロゲートを実現しつつ,既存の学習目標やアーキテクチャをどのように適合させ,一般化するかを実証する。
関連論文リスト
- Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
論文 参考訳(メタデータ) (2023-11-28T01:35:06Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
本稿では,PDEのパラメータ・ツー・ソリューション(前方)と解・ツー・パラメータ(逆)マップを同時に学習する物理駆動型ディープ潜在変数モデル(PDDLVM)を提案する。
提案フレームワークは、観測データをシームレスに統合し、逆問題を解決するとともに、生成モデルを構築するために容易に拡張できる。
有限要素離散パラメトリックPDE問題に対して,本手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-09T15:40:53Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Bayesian neural networks for weak solution of PDEs with uncertainty
quantification [3.4773470589069473]
ラベルなしでPDEを解くために、新しい物理制約ニューラルネットワーク(NN)アプローチが提案されている。
我々は,PDEの離散化残差に基づくNNの損失関数を,効率的で畳み込み演算子に基づくベクトル化実装により記述する。
本研究では, 定常拡散, 線形弾性, 非線形弾性に応用し, 提案フレームワークの性能と性能を示す。
論文 参考訳(メタデータ) (2021-01-13T04:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。