論文の概要: PIC2O-Sim: A Physics-Inspired Causality-Aware Dynamic Convolutional Neural Operator for Ultra-Fast Photonic Device FDTD Simulation
- arxiv url: http://arxiv.org/abs/2406.17810v1
- Date: Mon, 24 Jun 2024 18:15:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 17:46:26.687963
- Title: PIC2O-Sim: A Physics-Inspired Causality-Aware Dynamic Convolutional Neural Operator for Ultra-Fast Photonic Device FDTD Simulation
- Title(参考訳): PIC2O-Sim:超高速フォトニックデバイスFDTDシミュレーションのための物理誘起因果性を考慮した動的畳み込みニューラル演算子
- Authors: Pingchuan Ma, Haoyu Yang, Zhengqi Gao, Duane S. Boning, Jiaqi Gu,
- Abstract要約: 我々は,光デバイスシミュレーションのための物理インスパイアされたAIベースの予測フレームワーク PIC2OSim を提案する。
PIC2O-Simは51.2%のロールアウト予測誤差を提供し、パラメータは最先端のニューラル演算子よりも23.5倍少ない。
- 参考スコア(独自算出の注目度): 18.832901682895944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The finite-difference time-domain (FDTD) method, which is important in photonic hardware design flow, is widely adopted to solve time-domain Maxwell equations. However, FDTD is known for its prohibitive runtime cost, taking minutes to hours to simulate a single device. Recently, AI has been applied to realize orders-of-magnitude speedup in partial differential equation (PDE) solving. However, AI-based FDTD solvers for photonic devices have not been clearly formulated. Directly applying off-the-shelf models to predict the optical field dynamics shows unsatisfying fidelity and efficiency since the model primitives are agnostic to the unique physical properties of Maxwell equations and lack algorithmic customization. In this work, we thoroughly investigate the synergy between neural operator designs and the physical property of Maxwell equations and introduce a physics-inspired AI-based FDTD prediction framework PIC2O-Sim which features a causality-aware dynamic convolutional neural operator as its backbone model that honors the space-time causality constraints via careful receptive field configuration and explicitly captures the permittivity-dependent light propagation behavior via an efficient dynamic convolution operator. Meanwhile, we explore the trade-offs among prediction scalability, fidelity, and efficiency via a multi-stage partitioned time-bundling technique in autoregressive prediction. Multiple key techniques have been introduced to mitigate iterative error accumulation while maintaining efficiency advantages during autoregressive field prediction. Extensive evaluations on three challenging photonic device simulation tasks have shown the superiority of our PIC2O-Sim method, showing 51.2% lower roll-out prediction error, 23.5 times fewer parameters than state-of-the-art neural operators, providing 300-600x higher simulation speed than an open-source FDTD numerical solver.
- Abstract(参考訳): 光ハードウェア設計フローにおいて重要な有限差分時間領域(FDTD)法は、時間領域マックスウェル方程式の解法として広く採用されている。
しかし、FDTDは、単一のデバイスをシミュレートするのに数分から数時間かかる、禁断のランタイムコストで知られている。
近年,偏微分方程式 (PDE) の解法における次数-次数-次数-次数-次数-次数-の高速化を実現するためにAIが応用されている。
しかし、フォトニックデバイスのためのAIベースのFDTDソルバは明確に定式化されていない。
光場力学の予測にオフザシェルフモデルを直接適用すると、モデルプリミティブはマクスウェル方程式の特異な物理的性質に非依存であり、アルゴリズム的なカスタマイズが欠如しているため、不満足な忠実さと効率が示される。
本研究では、ニューラル演算子設計とマクスウェル方程式の物理的性質の相乗効果を徹底的に検討し、物理に着想を得たAIベースのFDTD予測フレームワークであるPIC2O-Simを導入する。
一方, 自動回帰予測において, 多段階分割時間結合技術による予測スケーラビリティ, 忠実度, 効率性のトレードオフについて検討する。
自己回帰場予測において効率性を保ちながら反復的エラー蓄積を軽減するために,複数の鍵となる手法が導入された。
PIC2O-Sim法では51.2%のロールアウト予測誤差,23.5のパラメータが最先端のニューラル演算子よりも小さく,オープンソースのFDTD数値解法よりも300-600倍高速である。
関連論文リスト
- Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
計算心血管モデリングは、血流動態を理解する上で重要な役割を担っている。
有限要素法(FEM)に基づく従来の1次元モデルは、3次元平均解に比べて精度が低いことが多い。
本研究では1次元血流モデルの精度を向上させる物理制約付き機械学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-08T15:22:20Z) - PACE: Pacing Operator Learning to Accurate Optical Field Simulation for Complicated Photonic Devices [14.671301859745453]
既存のSOTAアプローチであるNeurOLightは、現実世界の複雑なフォトニックデバイスに対する高忠実度フィールドの予測に苦労している。
長距離モデリング能力の強いクロス軸分解型PACE演算子を提案する。
人間の学習に触発されて、非常に難しいケースのシミュレーションタスクを、段階的に簡単な2つのタスクに分解する。
論文 参考訳(メタデータ) (2024-11-05T22:03:14Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
物理シミュレーションに潜時拡散モデルを適用する方法をいくつか紹介する。
提案手法は、現在のニューラルPDEソルバと、精度と効率の両面で競合することを示す。
スケーラブルで正確で使用可能な物理シミュレータを導入することで、ニューラルPDEソルバを実用化に近づけたいと思っています。
論文 参考訳(メタデータ) (2024-10-02T01:09:47Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric
Photonic Device Simulation [17.295318670037886]
超高速パラメトリックフォトニックデバイスシミュレーションのための周波数領域Maxwell PDEのファミリーを学習するために、NeurOLightと呼ばれる物理に依存しないニューラルネットワークフレームワークが提案されている。
我々は、NeurOLightが、未知のシミュレーション設定の広い空間に一般化し、数値解法よりも2桁の高速なシミュレーション速度を示し、予測誤差を54%減らし、パラメータを44%減らして、従来のニューラルネットワークモデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T21:25:26Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。