Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
- URL: http://arxiv.org/abs/2406.19195v1
- Date: Thu, 27 Jun 2024 14:13:46 GMT
- Title: Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
- Authors: Zeqin Yang, Weilin Chen, Ruichu Cai, Yuguang Yan, Zhifeng Hao, Zhipeng Yu, Zhichao Zou, Zhen Peng, Jiecheng Guo,
- Abstract summary: Long-term causal effect estimation is a significant but challenging problem in many applications.
Existing methods rely on ideal assumptions to estimate long-term average effects.
- Score: 23.602196005738676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term causal effect estimation is a significant but challenging problem in many applications. Existing methods rely on ideal assumptions to estimate long-term average effects, e.g., no unobserved confounders or a binary treatment,while in numerous real-world applications, these assumptions could be violated and average effects are unable to provide individual-level suggestions.In this paper,we address a more general problem of estimating the long-term heterogeneous dose-response curve (HDRC) while accounting for unobserved confounders. Specifically, to remove unobserved confounding in observational data, we introduce an optimal transport weighting framework to align the observational data to the experimental data with theoretical guarantees. Furthermore,to accurately predict the heterogeneous effects of continuous treatment, we establish a generalization bound on counterfactual prediction error by leveraging the reweighted distribution induced by optimal transport. Finally, we develop an HDRC estimator building upon the above theoretical foundations. Extensive experimental studies conducted on multiple synthetic and semi-synthetic datasets demonstrate the effectiveness of our proposed method.
Related papers
- A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
Estimating individualized treatment effects from observational data is a central challenge in causal inference.<n>In inverse probability weighting (IPW) is a well-established solution to this problem, but its integration into modern deep learning frameworks remains limited.<n>We propose Importance-Weighted Diffusion Distillation (IWDD), a novel generative framework that combines the pretraining of diffusion models with importance-weighted score distillation.
arXiv Detail & Related papers (2025-05-16T17:00:52Z) - Long-Term Individual Causal Effect Estimation via Identifiable Latent Representation Learning [12.38859245341133]
Estimating long-term causal effects by combining long-term observational and short-term experimental data is a crucial but challenging problem in many real-world scenarios.<n>In existing methods, several ideal assumptions are proposed to address the latent confounder problem raised by the observational data.<n>In this paper, we tackle the problem of estimating the long-term individual causal effects without the aforementioned assumptions.
arXiv Detail & Related papers (2025-05-08T12:42:49Z) - Long-term Causal Inference via Modeling Sequential Latent Confounding [49.64731441006396]
Ghassami et al. propose an approach based on the Conditional Additive Equi-Confounding Bias (CAECB) assumption.
We introduce a novel assumption that extends the CAECB assumption to accommodate temporal short-term outcomes.
Our proposed assumption states a functional relationship between sequential confounding biases across temporal short-term outcomes.
arXiv Detail & Related papers (2025-02-26T09:56:56Z) - Nonparametric Heterogeneous Long-term Causal Effect Estimation via Data Combination [37.491679058742925]
Long-term causal inference has drawn increasing attention in many scientific domains.
It is still understudied how to robustly and effectively estimate heterogeneous long-term causal effects.
We propose several two-stage style non-parametric estimators for heterogeneous long-term causal effect estimation.
arXiv Detail & Related papers (2025-02-26T09:17:04Z) - Causal Lifting of Neural Representations: Zero-Shot Generalization for Causal Inferences [56.23412698865433]
We focus on causal inferences on a target experiment with unlabeled factual outcomes, retrieved by a predictive model fine-tuned on a labeled similar experiment.
First, we show that factual outcome estimation via Empirical Risk Minimization (ERM) may fail to yield valid causal inferences on the target population.
We propose Deconfounded Empirical Risk Minimization (DERM), a new simple learning procedure minimizing the risk over a fictitious target population.
arXiv Detail & Related papers (2025-02-10T10:52:17Z) - Contrastive Balancing Representation Learning for Heterogeneous Dose-Response Curves Estimation [34.20279432270329]
Estimating the individuals' potential response to varying treatment doses is crucial for decision-making in areas such as precision medicine and management science.
We propose a novel Contrastive balancing Representation learning Network using a partial distance measure, called CRNet, for estimating the heterogeneous dose-response curves.
arXiv Detail & Related papers (2024-03-21T08:41:53Z) - A Double Machine Learning Approach to Combining Experimental and Observational Data [59.29868677652324]
We propose a double machine learning approach to combine experimental and observational studies.
Our framework tests for violations of external validity and ignorability under milder assumptions.
arXiv Detail & Related papers (2023-07-04T02:53:11Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Estimating long-term causal effects from short-term experiments and
long-term observational data with unobserved confounding [5.854757988966379]
We study the identification and estimation of long-term treatment effects when both experimental and observational data are available.
Our long-term causal effect estimator is obtained by combining regression residuals with short-term experimental outcomes.
arXiv Detail & Related papers (2023-02-21T12:22:47Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
Causal effects in populations are often estimated using observational datasets.
We propose a meta-algorithm that attempts to reject observational estimates that are biased.
arXiv Detail & Related papers (2022-09-27T21:47:23Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
We propose an upper bound for the bias of average treatment estimation under the strong ignorability assumption.
We implement this upper bound as an objective function being minimized by leveraging a novel additive neural network architecture.
The proposed method is illustrated by re-examining the benchmark datasets for causal inference, and it outperforms the state-of-art.
arXiv Detail & Related papers (2022-03-07T07:42:40Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
We propose Counterfactual ODE, a novel method to predict the impact of treatments continuously over time.
We demonstrate over several longitudinal data sets that CF-ODE provides more accurate predictions and more reliable uncertainty estimates than previously available methods.
arXiv Detail & Related papers (2022-02-24T09:50:02Z) - Long-term Causal Inference Under Persistent Confounding via Data Combination [38.026740610259225]
We study the identification and estimation of long-term treatment effects when both experimental and observational data are available.
Since the long-term outcome is observed only after a long delay, it is not measured in the experimental data, but only recorded in the observational data.
arXiv Detail & Related papers (2022-02-15T07:44:20Z) - Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects [13.32091725929965]
We consider the task of estimating the causal effect of a treatment variable on a long-term outcome variable using data from an observational domain and an experimental domain.
The observational data is assumed to be confounded and hence without further assumptions, this dataset alone cannot be used for causal inference either.
arXiv Detail & Related papers (2022-01-26T04:21:14Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
arXiv Detail & Related papers (2020-10-28T15:05:08Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.