論文の概要: Sparse identification of quasipotentials via a combined data-driven method
- arxiv url: http://arxiv.org/abs/2407.05050v1
- Date: Sat, 6 Jul 2024 11:27:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:18:15.709145
- Title: Sparse identification of quasipotentials via a combined data-driven method
- Title(参考訳): 組み合わせデータ駆動法による準ポテンシャルのスパース同定
- Authors: Bo Lin, Pierpaolo Belardinelli,
- Abstract要約: 我々は、ニューラルネットワークとスパース回帰アルゴリズムという2つのデータ駆動手法を組み合わせて機械学習を活用し、擬ポテンシャル関数の記号表現を得る。
提案手法は, 未知の正準ポテンシャルモデルと, ナノメカニカル共振器のダイナミックスに対して, 擬似準ポテンシャル方程式を求めるものである。
- 参考スコア(独自算出の注目度): 4.599618895656792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quasipotential function allows for comprehension and prediction of the escape mechanisms from metastable states in nonlinear dynamical systems. This function acts as a natural extension of the potential function for non-gradient systems and it unveils important properties such as the maximum likelihood transition paths, transition rates and expected exit times of the system. Here, we leverage on machine learning via the combination of two data-driven techniques, namely a neural network and a sparse regression algorithm, to obtain symbolic expressions of quasipotential functions. The key idea is first to determine an orthogonal decomposition of the vector field that governs the underlying dynamics using neural networks, then to interpret symbolically the downhill and circulatory components of the decomposition. These functions are regressed simultaneously with the addition of mathematical constraints. We show that our approach discovers a parsimonious quasipotential equation for an archetypal model with a known exact quasipotential and for the dynamics of a nanomechanical resonator. The analytical forms deliver direct access to the stability of the metastable states and predict rare events with significant computational advantages. Our data-driven approach is of interest for a wide range of applications in which to assess the fluctuating dynamics.
- Abstract(参考訳): 準ポテンシャル関数は、非線形力学系の準安定状態からの脱出機構の理解と予測を可能にする。
この関数は、非階調系のポテンシャル関数の自然な拡張として機能し、最大極大遷移経路、遷移速度、システムの期待終了時間などの重要な特性を明らかにする。
ここでは、ニューラルネットワークとスパース回帰アルゴリズムという2つのデータ駆動手法を組み合わせて機械学習を活用し、擬ポテンシャル関数の記号表現を得る。
鍵となる考え方は、まずニューラルネットワークを用いて基礎となる力学を支配するベクトル場の直交分解を決定し、次に分解の下り坂と循環成分を象徴的に解釈することである。
これらの関数は、数学的制約の追加と同時に回帰される。
提案手法は, 未知の正準ポテンシャルモデルと, ナノメカニカル共振器のダイナミックスに対して, 擬似準ポテンシャル方程式を求めるものである。
解析形式は準安定状態の安定性に直接アクセスし、重要な計算上の優位性を持つ稀な事象を予測する。
データ駆動型アプローチは、変動するダイナミクスを評価する幅広いアプリケーションにとって興味深いものです。
関連論文リスト
- Quasi-potential and drift decomposition in stochastic systems by sparse identification [0.0]
準ポテンシャルはシステムにおいて重要な概念であり、そのようなシステムの力学の長期的挙動を考慮に入れている。
本稿では,準ポテンシャルを決定するために,スパース学習手法とアクション最小化手法を組み合わせる。
提案手法を2次元および3次元システムで実装し,様々なタイプの潜在的景観とアトラクタを網羅する。
論文 参考訳(メタデータ) (2024-09-10T22:02:15Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
我々は,そのダイナミクスを忠実に捉えた状態の表現を学習する問題を研究する。
これは、転送演算子やシステムのジェネレータを学ぶのに役立ちます。
ニューラルネットワークに対する最適化問題として,優れた表現の探索が可能であることを示す。
論文 参考訳(メタデータ) (2023-07-19T11:32:24Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - A Data Driven Method for Computing Quasipotentials [8.055813148141246]
準ポテンシャルは遷移イベントと遷移経路の統計を特徴づける中心的な役割を担っている。
動的プログラミング原理やパス空間に基づく伝統的な方法は、次元の呪いに苦しむ傾向があります。
本手法は,空間的離散化や経路空間最適化問題を解くことなく,効果的に準ポテンシャル景観を計算できることを示す。
論文 参考訳(メタデータ) (2020-12-13T02:32:49Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。