論文の概要: Quasi-potential and drift decomposition in stochastic systems by sparse identification
- arxiv url: http://arxiv.org/abs/2409.06886v1
- Date: Tue, 10 Sep 2024 22:02:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 16:16:15.053609
- Title: Quasi-potential and drift decomposition in stochastic systems by sparse identification
- Title(参考訳): スパース同定による確率系の準ポテンシャル・ドリフト分解
- Authors: Leonardo Grigorio, Mnerh Alqahtani,
- Abstract要約: 準ポテンシャルはシステムにおいて重要な概念であり、そのようなシステムの力学の長期的挙動を考慮に入れている。
本稿では,準ポテンシャルを決定するために,スパース学習手法とアクション最小化手法を組み合わせる。
提案手法を2次元および3次元システムで実装し,様々なタイプの潜在的景観とアトラクタを網羅する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quasi-potential is a key concept in stochastic systems as it accounts for the long-term behavior of the dynamics of such systems. It also allows us to estimate mean exit times from the attractors of the system, and transition rates between states. This is of significance in many applications across various areas such as physics, biology, ecology, and economy. Computation of the quasi-potential is often obtained via a functional minimization problem that can be challenging. This paper combines a sparse learning technique with action minimization methods in order to: (i) Identify the orthogonal decomposition of the deterministic vector field (drift) driving the stochastic dynamics; (ii) Determine the quasi-potential from this decomposition. This decomposition of the drift vector field into its gradient and orthogonal parts is accomplished with the help of a machine learning-based sparse identification technique. Specifically, the so-called sparse identification of non-linear dynamics (SINDy) [1] is applied to the most likely trajectory in a stochastic system (instanton) to learn the orthogonal decomposition of the drift. Consequently, the quasi-potential can be evaluated even at points outside the instanton path, allowing our method to provide the complete quasi-potential landscape from this single trajectory. Additionally, the orthogonal drift component obtained within our framework is important as a correction to the exponential decay of transition rates and exit times. We implemented the proposed approach in 2- and 3-D systems, covering various types of potential landscapes and attractors.
- Abstract(参考訳): 準ポテンシャルは確率系において重要な概念であり、そのような系の力学の長期的挙動を考慮に入れている。
また、システムのアトラクタからの平均終了時間を推定し、状態間の遷移率を推定することもできます。
これは物理学、生物学、生態学、経済など様々な分野における多くの応用において重要である。
準ポテンシャルの計算は、しばしば難しい機能的最小化問題によって得られる。
本稿では,スパース学習手法とアクション最小化手法を組み合わせる。
一 確率力学を駆動する決定論的ベクトル場(ドリフト)の直交分解を同定すること。
(ii)この分解から準ポテンシャルを決定する。
このドリフトベクトル場の勾配と直交部分への分解は、機械学習に基づくスパース識別技術を用いて達成される。
具体的には、非線型力学(SINDy)[1] のいわゆるスパース同定が確率系(インスタント)の最も可能性の高い軌道に適用され、ドリフトの直交分解を学習する。
その結果、準ポテンシャルはインスタントパスの外側の点でも評価でき、この1つの軌道から完全な準ポテンシャルランドスケープを提供することができる。
さらに, 本フレームワーク内で得られた直交ドリフト成分は, 遷移速度と出口時間の指数的減衰の補正として重要である。
提案手法を2次元および3次元システムで実装し,様々なタイプの潜在的景観とアトラクタを網羅した。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Sparse identification of quasipotentials via a combined data-driven method [4.599618895656792]
我々は、ニューラルネットワークとスパース回帰アルゴリズムという2つのデータ駆動手法を組み合わせて機械学習を活用し、擬ポテンシャル関数の記号表現を得る。
提案手法は, 未知の正準ポテンシャルモデルと, ナノメカニカル共振器のダイナミックスに対して, 擬似準ポテンシャル方程式を求めるものである。
論文 参考訳(メタデータ) (2024-07-06T11:27:52Z) - FP-IRL: Fokker-Planck-based Inverse Reinforcement Learning -- A
Physics-Constrained Approach to Markov Decision Processes [0.5735035463793008]
逆強化学習(英: Inverse Reinforcement Learning、IRL)は、自律エージェントの行動の基礎となる根拠を明らかにする技術である。
IRLは、観測されたエージェント軌道からマルコフ決定過程(MDP)の未知の報酬関数を推定しようとする。
我々は、観測軌道のみを用いて遷移関数と報酬関数を同時に推論できる新しいIRLアルゴリズムFP-IRLを作成する。
論文 参考訳(メタデータ) (2023-06-17T18:28:03Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Onset of scrambling as a dynamical transition in tunable-range quantum
circuits [0.0]
長距離接続の異なる量子回路におけるスクランブルの開始を示す動的遷移を同定する。
異なる構造の回路の相互作用範囲の関数として、三部構造相互情報はスケーリング崩壊を示すことを示す。
従来のパワー-ロー相互作用を持つシステムに加えて、決定論的、スパース回路における同じ現象を同定する。
論文 参考訳(メタデータ) (2023-04-19T17:37:10Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - A Data Driven Method for Computing Quasipotentials [8.055813148141246]
準ポテンシャルは遷移イベントと遷移経路の統計を特徴づける中心的な役割を担っている。
動的プログラミング原理やパス空間に基づく伝統的な方法は、次元の呪いに苦しむ傾向があります。
本手法は,空間的離散化や経路空間最適化問題を解くことなく,効果的に準ポテンシャル景観を計算できることを示す。
論文 参考訳(メタデータ) (2020-12-13T02:32:49Z) - A Machine Learning Framework for Computing the Most Probable Paths of
Stochastic Dynamical Systems [5.028470487310566]
そこで我々は,Onsager-Machlup 行動関数論における最も確率の高い経路を計算するための機械学習フレームワークを開発した。
具体的には、ハミルトニアン系の境界値問題を修正し、プロトタイプニューラルネットワークを設計し、射撃法の欠点を補う。
論文 参考訳(メタデータ) (2020-10-01T20:01:37Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。