論文の概要: Partial-differential-algebraic equations of nonlinear dynamics by Physics-Informed Neural-Network: (I) Operator splitting and framework assessment
- arxiv url: http://arxiv.org/abs/2408.01914v3
- Date: Thu, 17 Oct 2024 22:25:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 13:07:08.084281
- Title: Partial-differential-algebraic equations of nonlinear dynamics by Physics-Informed Neural-Network: (I) Operator splitting and framework assessment
- Title(参考訳): 物理インフォームドニューラルネットワークによる非線形力学の部分微分代数方程式:(I)演算子分割とフレームワーク評価
- Authors: Loc Vu-Quoc, Alexander Humer,
- Abstract要約: 偏微分代数方程式の解法として, 新規な物理情報ネットワーク(PINN)の構築法が提案されている。
これらの新しい手法には PDE 形式があり、これは未知の従属変数が少ない低レベル形式からより従属変数を持つ高レベル形式へと進化している。
- 参考スコア(独自算出の注目度): 51.3422222472898
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Several forms for constructing novel physics-informed neural-networks (PINN) for the solution of partial-differential-algebraic equations based on derivative operator splitting are proposed, using the nonlinear Kirchhoff rod as a prototype for demonstration. The open-source DeepXDE is likely the most well documented framework with many examples. Yet, we encountered some pathological problems and proposed novel methods to resolve them. Among these novel methods are the PDE forms, which evolve from the lower-level form with fewer unknown dependent variables to higher-level form with more dependent variables, in addition to those from lower-level forms. Traditionally, the highest-level form, the balance-of-momenta form, is the starting point for (hand) deriving the lowest-level form through a tedious (and error prone) process of successive substitutions. The next step in a finite element method is to discretize the lowest-level form upon forming a weak form and linearization with appropriate interpolation functions, followed by their implementation in a code and testing. The time-consuming tedium in all of these steps could be bypassed by applying the proposed novel PINN directly to the highest-level form. We developed a script based on JAX. While our JAX script did not show the pathological problems of DDE-T (DDE with TensorFlow backend), it is slower than DDE-T. That DDE-T itself being more efficient in higher-level form than in lower-level form makes working directly with higher-level form even more attractive in addition to the advantages mentioned further above. Since coming up with an appropriate learning-rate schedule for a good solution is more art than science, we systematically codified in detail our experience running optimization through a normalization/standardization of the network-training process so readers can reproduce our results.
- Abstract(参考訳): 微分作用素分割に基づく偏微分代数方程式の解法として, 非線形キルヒホフロッドを実証の原型として, 新規な物理インフォームドニューラルネット(PINN)を構築するためのいくつかの形式が提案されている。
オープンソースであるDeepXDEは、おそらく多くの例で最もよくドキュメント化されたフレームワークである。
しかし,病理学的な問題に遭遇し,その解決のための新しい方法を提案した。
これらの新しい手法には PDE 形式があるが、これは未知の従属変数が少ない低レベル形式からより従属変数を持つ高レベル形式へと進化し、さらに下位レベルの形式からも進化している。
伝統的に、最上位の形式であるモメンタ形式は、連続する置換の退屈な(そしてエラーを起こしやすい)過程を通じて最下位の形式を導出する(手)出発点である。
有限要素法における次のステップは、弱い形式を形成し、適切な補間関数で線形化し、次にコードとテストで実装することで、最低レベルの形式を識別することである。
これらのステップの全てで時間を消費するテジウムは、提案された新しいPINNを最も高いレベルに直接適用することでバイパスすることができる。
私たちはJAXをベースにしたスクリプトを開発しました。
我々のJAXスクリプトはDDE-T(TensorFlowバックエンドのDDE)の病理的な問題を示さなかったが、DDE-Tよりも遅い。
DDE-T自体が低レベルの形式よりも高レベルの形式の方が効率的であることは、上述の利点に加えて、より高レベルの形式で直接動作することをより魅力的にしている。
そこで我々は,ネットワーク学習プロセスの正規化/標準化を通じて最適化を行った経験を詳細に体系化して,読者が結果を再現できるようにした。
関連論文リスト
- Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Physics-constrained robust learning of open-form partial differential equations from limited and noisy data [1.50528618730365]
本研究では,自由形式偏微分方程式(PDE)を有限・雑音データから頑健に解明する枠組みを提案する。
ニューラルネットワークに基づく予測モデルは、システム応答に適合し、生成されたPDEに対する報酬評価器として機能する。
数値実験により, 非線形力学系から, 極めてノイズの多いデータで支配方程式を発見できることを示す。
論文 参考訳(メタデータ) (2023-09-14T12:34:42Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Bi-level Physics-Informed Neural Networks for PDE Constrained
Optimization using Broyden's Hypergradients [29.487375792661005]
PDE制約最適化問題を解決するための新しい二段階最適化フレームワークを提案する。
内部ループ最適化では、PDE制約のみを解決するためにPINNを採用する。
外部ループに対しては,Implicit関数定理に基づく Broyden'simat 法を用いて新しい手法を設計する。
論文 参考訳(メタデータ) (2022-09-15T06:21:24Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound,
Neural Scaling Law and Minimax Optimality [11.508011337440646]
楕円偏微分方程式(PDE)をランダムサンプルから解くための深層学習手法の統計的限界について検討する。
この問題を単純化するために、ディリクレ境界条件がゼロのハイパーキューブ上のシュル・オーディンガー方程式(英語版)という楕円型PDEのプロトタイプに焦点をあてる。
両手法の上限値と下限値を確立し,この問題に対して同時に開発された上限値を改善する。
論文 参考訳(メタデータ) (2021-10-13T17:26:31Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。