論文の概要: Phase Transition in the Quantum Capacity of Quantum Channels
- arxiv url: http://arxiv.org/abs/2408.05733v4
- Date: Sat, 09 Nov 2024 15:49:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:04:18.147605
- Title: Phase Transition in the Quantum Capacity of Quantum Channels
- Title(参考訳): 量子チャネルの量子容量における相転移
- Authors: Shayan Roofeh, Vahid Karimipour,
- Abstract要約: ホワイトノイズによって汚染された場合、任意の次元の任意の量子チャネル$Lambda$が量子状態の伝送能力を完全に失うことを証明している。
また、分極チャネルの補体の量子容量を閉じた形で求める。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Determining the capacities of quantum channels is one of the fundamental problems of quantum information theory. This problem is extremely challenging and technically difficult, allowing only lower and upper bounds to be calculated for certain types of channels. In this paper, we prove that every quantum channel $\Lambda$ in arbitrary dimension, when contaminated by white noise in the form $\Lambda_x(\rho)=(1-x)\Lambda(\rho)+x\tr(\rho) \frac{I}{d}$, completely loses its capacity of transmitting quantum states when $x\geq \frac{1}{2}$, no matter what type of encoding and decoding is used. In other words, the quantum capacity of the channel vanishes in this region. To show this, we find a channel ${\cal N}_x$, which anti-degrades the depolarizing channel when $x\geq \frac{1}{2}$. We also find the quantum capacity of the complement of the depolarizing channel in closed form. Besides the erasure channel, this is the only example of a parameteric channel in arbitrary dimension for which the quantum capacity has been calculated in closed form.
- Abstract(参考訳): 量子チャネルの容量を決定することは、量子情報理論の基本的な問題の一つである。
この問題は極めて困難で技術的に困難であり、特定の種類のチャネルに対して下限と上限しか計算できない。
本稿では、任意の次元において全ての量子チャネル$\Lambda$が、$\Lambda_x(\rho)=(1-x)\Lambda(\rho)+x\tr(\rho) \frac{I}{d}$の形でホワイトノイズによって汚染されると、$x\geq \frac{1}{2}$のときの量子状態の伝送能力は完全に失われることを示す。
言い換えれば、チャネルの量子容量はこの領域で消滅する。
これを示すために、${\cal N}_x$ というチャネルを見つけ、$x\geq \frac{1}{2}$ のときに非分極チャネルを分解する。
また、分極チャネルの補体の量子容量を閉じた形で求める。
消去チャネルの他に、これは量子容量が閉じた形で計算された任意の次元のパラメータチャネルの唯一の例である。
関連論文リスト
- General Communication Enhancement via the Quantum Switch [15.779145740528417]
我々は$mathcalP_n>0$が、量子$tt SWITCH$による通信強化に必要な条件であり、十分な条件であると予想する。
次に、BB84チャネルのプライベートキャパシティを高める量子$tt SWITCH$を含む通信プロトコルを定式化する。
論文 参考訳(メタデータ) (2024-07-03T00:47:13Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - The superadditivity effects of quantum capacity decrease with the
dimension for qudit depolarizing channels [0.0]
本研究では,Qudit脱分極チャネルの量子容量の利得が考慮されたシステムの次元とどのように関係するかを考察する。
偏極ノイズを経験する高次元キューディットを考えると、チャネルのコヒーレント情報は達成可能な速度であるだけでなく、本質的に任意の量子ブロック符号に対して可能な最大速度である。
論文 参考訳(メタデータ) (2023-01-24T16:54:09Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
浅量子回路の計算能力と古典計算の組合せを包括的に評価する。
いくつかの問題に対して、1つの浅い量子回路で適応的な測定を行う能力は、適応的な測定をせずに多くの浅い量子回路を実行する能力よりも有用である。
論文 参考訳(メタデータ) (2022-10-12T17:54:02Z) - Quantum dynamics is not strictly bidivisible [0.0]
一方、一般有限次元の量子チャネルでは、少なくとも全クラウス階のチャネルについては、同じことが成り立つ。
境界部分とマルコフ部分で分離する量子チャネルの新たな分解を導入し、任意の有限次元に対して保持する。
論文 参考訳(メタデータ) (2022-03-25T05:20:09Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
しきい値定理は、フォールトトレラント量子計算の理論における基本的な結果である。
振幅雑音を伴う耐故障性量子計算の最大長に対する指数的上限を証明した。
論文 参考訳(メタデータ) (2022-01-31T22:19:49Z) - Dephasing superchannels [0.09545101073027092]
我々は, 量子チャネルのコヒーレントな特性を低下させる環境騒音のクラスを, 強調するスーパーチャネルの特性を導入, 解析することによって特徴付ける。
これらは、量子チャネル$mathcalE$の古典的でない性質だけに影響を与える超チャネルとして定義される。
そのような超チャネル $Xi_C$ が Jamiolkowski 状態 $J(mathcalE)$ of a channel $mathcalE$ via a Schur product, $J'=J
論文 参考訳(メタデータ) (2021-07-14T10:10:46Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Quantum Channel State Masking [78.7611537027573]
量子状態に依存する量子チャネル上の通信は、エンコーダがチャネル側情報(CSI)を有しており、デコーダから量子チャネル状態に関する情報を隠蔽する必要があるときに考慮される。
絡み合い支援マスキング均等領域に対して完全な特徴づけが確立され、補助のない量子キャパシティ推論関数に対して正規化公式が与えられる。
論文 参考訳(メタデータ) (2020-06-10T16:18:03Z) - Bosonic quantum communication across arbitrarily high loss channels [68.58838842613457]
一般減衰器$Phi_lambda, sigma$はボゾン量子チャネルであり、入力と固定された環境状態を組み合わせることで作用する。
任意の$lambda>0$に対して、適切な単一モード状態 $sigma(lambda)$が存在することを示す。
我々の結果は、チャネルの入力でエネルギー制約を固定しても成り立ち、任意に低い透過率の極限でも一定の速度で量子通信が可能であることを示唆している。
論文 参考訳(メタデータ) (2020-03-19T16:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。