論文の概要: Two-level deep domain decomposition method
- arxiv url: http://arxiv.org/abs/2408.12198v1
- Date: Thu, 22 Aug 2024 08:20:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 14:43:27.626349
- Title: Two-level deep domain decomposition method
- Title(参考訳): 2レベル深部領域分解法
- Authors: Victorita Dolean, Serge Gratton, Alexander Heinlein, Valentin Mercier,
- Abstract要約: 本研究では,境界値問題を解くために,粗度ネットワークを付加した2レベルディープドメイン分解法を提案する。
粗いレベルのネットワークの追加は、単一レベルの手法と比較してスケーラビリティと収束率を改善する。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a two-level Deep Domain Decomposition Method (Deep-DDM) augmented with a coarse-level network for solving boundary value problems using physics-informed neural networks (PINNs). The addition of the coarse level network improves scalability and convergence rates compared to the single level method. Tested on a Poisson equation with Dirichlet boundary conditions, the two-level deep DDM demonstrates superior performance, maintaining efficient convergence regardless of the number of subdomains. This advance provides a more scalable and effective approach to solving complex partial differential equations with machine learning.
- Abstract(参考訳): 本研究では,物理インフォームドニューラルネットワーク(PINN)を用いて境界値問題を解くために,粗度ネットワークを付加した2レベルディープドメイン分解法(ディープ-DDM)を提案する。
粗いレベルのネットワークの追加は、単一レベルの手法と比較してスケーラビリティと収束率を改善する。
ディリクレ境界条件を持つポアソン方程式を用いて、2レベル深度DDMは、サブドメインの数に関係なく効率的な収束を維持し、優れた性能を示す。
この進歩は、複雑な偏微分方程式を機械学習で解くための、よりスケーラブルで効果的なアプローチを提供する。
関連論文リスト
- Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
一般化されたインタフェース条件を持つ非重複型シュワルツ型領域分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
ドメイン分解法では、ポアソン方程式とヘルムホルツ方程式の両方の解を学ぶことができる。
論文 参考訳(メタデータ) (2024-09-20T16:48:55Z) - General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
我々は,Singular Perturbation Differential Equations(SPDE)の解法として,GKPINN(General-Kindred Physics-Informed Neural Network)を提案する。
この手法は, 境界層の事前知識を方程式から利用し, 境界層を近似するPINNを支援する新しいネットワークを確立する。
GKPINNは,確立したPINN法と比較して,2~4桁の誤差を2~4桁に削減し,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-08-27T02:03:22Z) - Compositional Curvature Bounds for Deep Neural Networks [7.373617024876726]
安全クリティカルなアプリケーションにおけるニューラルネットワークの普及を脅かす重要な課題は、敵の攻撃に対する脆弱性である。
本研究では, 連続的に微分可能な深層ニューラルネットワークの2次挙動について検討し, 対向摂動に対する堅牢性に着目した。
ニューラルネットワークの第2微分の証明可能な上界を解析的に計算する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-07T17:50:15Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - A coarse space acceleration of deep-DDM [0.0]
我々は最近提案されたPDEの解法に対するディープ・ダム・アプローチの拡張について述べる。
粗い空間補正は、解法の収束の劣化を軽減することができることを示す。
実験により,本手法は深部ddm法の顕著な加速を誘導することが示された。
論文 参考訳(メタデータ) (2021-12-07T14:41:28Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - PFNN: A Penalty-Free Neural Network Method for Solving a Class of
Second-Order Boundary-Value Problems on Complex Geometries [4.620110353542715]
本稿では,2次境界値問題のクラスを解くために,ペナルティのないニューラルネットワーク手法であるPFNNを提案する。
PFNNは、精度、柔軟性、堅牢性の点で、既存のいくつかのアプローチよりも優れている。
論文 参考訳(メタデータ) (2020-04-14T13:36:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。