論文の概要: TMN: A Lightweight Neuron Model for Efficient Nonlinear Spike Representation
- arxiv url: http://arxiv.org/abs/2408.17245v3
- Date: Sun, 29 Jun 2025 07:20:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 15:08:38.441528
- Title: TMN: A Lightweight Neuron Model for Efficient Nonlinear Spike Representation
- Title(参考訳): TMN:高効率非線形スパイク表現のための軽量ニューロンモデル
- Authors: Yiwen Gu, Junchuan Gu, Haibin Shen, Kejie Huang,
- Abstract要約: スパイク・トレインはスパイク・ニューラル・ネットワークにおける情報伝達の主要な媒体である。
スパイク数やタイミングに基づく既存の符号化スキームは、しばしば低ステップの制約の下で厳しい制限に直面している。
本稿では,2つの重要なイノベーションを特徴とする新しいニューロンモデルであるTernary Momentum Neuron (TMN)を提案する。
- 参考スコア(独自算出の注目度): 7.524721345903027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spike trains serve as the primary medium for information transmission in Spiking Neural Networks, playing a crucial role in determining system efficiency. Existing encoding schemes based on spike counts or timing often face severe limitations under low-timestep constraints, while more expressive alternatives typically involve complex neuronal dynamics or system designs, which hinder scalability and practical deployment. To address these challenges, we propose the Ternary Momentum Neuron (TMN), a novel neuron model featuring two key innovations: (1) a lightweight momentum mechanism that realizes exponential input weighting by doubling the membrane potential before integration, and (2) a ternary predictive spiking scheme which employs symmetric sub-thresholds $\pm\frac{1}{2}v_{th}$ to enable early spiking and correct over-firing. Extensive experiments across diverse tasks and network architectures demonstrate that the proposed approach achieves high-precision encoding with significantly fewer timesteps, providing a scalable and hardware-aware solution for next-generation SNN computing.
- Abstract(参考訳): スパイク列車はスパイクニューラルネットワークにおける情報伝達の主要な媒体であり、システムの効率を決定する上で重要な役割を果たしている。
スパイク数やタイミングに基づく既存の符号化スキームは、しばしば低段階の制約の下で厳しい制限に直面し、より表現力のある代替案は、通常、複雑な神経力学やシステム設計を伴い、スケーラビリティと実用的な展開を妨げる。
これらの課題に対処するため,1) 膜電位を2倍にすることで指数的な入力重み付けを実現する軽量運動量機構,(2) 対称サブスレッショルド$\pm\frac{1}{2}v_{th}$を用いた3次予測スパイキング方式,の2つの重要な革新を特徴とする新しいニューロンモデルである3次運動ニューロン(TMN)を提案する。
多様なタスクやネットワークアーキテクチャにわたる広範な実験により、提案手法は、非常に少ない時間ステップで高精度なエンコーディングを実現し、次世代SNNコンピューティングのためのスケーラブルでハードウェア対応のソリューションを提供することを示した。
関連論文リスト
- Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
スパイキングニューラルネットワーク(SNN)の計算的非効率性は、主に膜電位の逐次更新によるものである。
スパイキングニューロンの並列計算法である膜電位推定並列スパイキングニューロン(MPE-PSN)を提案する。
提案手法では,特に高次ニューロン密度条件下での計算効率の向上が期待できる。
論文 参考訳(メタデータ) (2024-09-08T05:14:22Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
スパイキングニューラルネットワーク (SNN) は、その生物の楽観性とエネルギー効率で知られている。
本研究では,SNNアーキテクチャにおける新しい計算手法と情報符号化方式の融合について検討する。
提案手法のトレードオフを,精度,推論遅延,スパイク空間性,エネルギー消費,データセットの観点から検討する。
論文 参考訳(メタデータ) (2024-04-26T22:52:23Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Timing-Based Backpropagation in Spiking Neural Networks Without
Single-Spike Restrictions [2.8360662552057323]
スパイキングニューラルネットワーク(SNN)のトレーニングのための新しいバックプロパゲーションアルゴリズムを提案する。
シングルスパイク制限なしで、個々のニューロンの相対多重スパイクタイミングに情報をエンコードする。
論文 参考訳(メタデータ) (2022-11-29T11:38:33Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークの代替となる。
本研究は,隠されたニューロンを含むすべてのニューロンの所望のスパイク活性を導出する方法である欲求バックプロパゲーションを提示する。
我々はMNISTとFashion-MNISTを分類するために3層ネットワークを訓練し、それぞれ98.41%と87.56%の精度に達した。
論文 参考訳(メタデータ) (2022-11-10T08:32:13Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Spike-inspired Rank Coding for Fast and Accurate Recurrent Neural
Networks [5.986408771459261]
生物学的スパイクニューラルネットワーク(SNN)は、その出力の情報を時間的にエンコードすることができるが、人工ニューラルネットワーク(ANN)は従来はそうではない。
ここでは、SNNにインスパイアされたランク符号化(RC)のような時間符号化が、LSTMなどの従来のANNにも適用可能であることを示す。
RCトレーニングは推論中の時間と監視を著しく低減し、精度は最小限に抑えられる。
逐次分類の2つのおもちゃ問題と、最初の入力時間ステップ後にRCモデルが99.19%の精度を達成できる時間符号化MNISTデータセットにおいて、これらを実証する。
論文 参考訳(メタデータ) (2021-10-06T15:51:38Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike
Hybrid Input Encoding [5.725845886457027]
スパイキングニューラルネットワーク(SNN)は、イベント駆動型ニューロモルフィックハードウェアにおいて高い計算効率を提供する。
SNNは、非効率な入力符号化とトレーニング技術により、高い推論遅延に悩まされる。
本稿では低遅延エネルギー効率SNNのためのトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-26T06:16:40Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks(SNN)は非同期離散イベント(スパイク)で動作する
本稿では,深層SNNのための計算効率のよいトレーニング手法を提案する。
我々は、SNN上のImageNetデータセットの65.19%のトップ1精度を250タイムステップで達成し、同様の精度で変換されたSNNに比べて10倍高速である。
論文 参考訳(メタデータ) (2020-05-04T19:30:43Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。