論文の概要: Computational Dynamical Systems
- arxiv url: http://arxiv.org/abs/2409.12179v1
- Date: Wed, 18 Sep 2024 17:51:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 16:21:44.886315
- Title: Computational Dynamical Systems
- Title(参考訳): 計算力学系
- Authors: Jordan Cotler, Semon Rezchikov,
- Abstract要約: チューリングマシンをシミュレートするスムーズな力学系について、その意味について定義を与える。
カオス的」力学系と「可積分」力学系は普遍チューリングマシンを強くシミュレートできないことを示す。
より広範に、我々の研究は「機械」が他の機械をシミュレートする意味を解明し、低複雑さの「エンコーダ」と「デコーダ」を定義する必要性を強調している。
- 参考スコア(独自算出の注目度): 0.6138671548064356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the computational complexity theory of smooth, finite-dimensional dynamical systems. Building off of previous work, we give definitions for what it means for a smooth dynamical system to simulate a Turing machine. We then show that 'chaotic' dynamical systems (more precisely, Axiom A systems) and 'integrable' dynamical systems (more generally, measure-preserving systems) cannot robustly simulate universal Turing machines, although such machines can be robustly simulated by other kinds of dynamical systems. Subsequently, we show that any Turing machine that can be encoded into a structurally stable one-dimensional dynamical system must have a decidable halting problem, and moreover an explicit time complexity bound in instances where it does halt. More broadly, our work elucidates what it means for one 'machine' to simulate another, and emphasizes the necessity of defining low-complexity 'encoders' and 'decoders' to translate between the dynamics of the simulation and the system being simulated. We highlight how the notion of a computational dynamical system leads to questions at the intersection of computational complexity theory, dynamical systems theory, and real algebraic geometry.
- Abstract(参考訳): 滑らかな有限次元力学系の計算複雑性理論について検討する。
これまでの研究を基に、チューリングマシンをシミュレートするスムーズな力学系について、その意味について定義する。
次に、「カオス」力学系(より正確には Axiom A 系)と「可積分」力学系(より一般的には測度保存系)は普遍チューリングマシンを頑健にシミュレートすることはできないが、そのような機械は他の種類の力学系によって頑健にシミュレートできることを示した。
その後、構造的に安定な1次元力学系に符号化できるチューリングマシンは、決定可能な停止問題を持ち、その上、停止するインスタンスに有界な明示的な時間複雑性を持つことが示される。
より広義に、我々の研究は、ある「機械」が別の「機械」をシミュレートする意味を解明し、シミュレーションのダイナミクスとシミュレートされるシステムのダイナミクスを翻訳するために、低複雑さの「エンコーダ」と「デコーダ」を定義する必要性を強調している。
計算力学系の概念が、計算複雑性理論、力学系理論、および実代数幾何学の交点における疑問にどのように結びつくかを強調する。
関連論文リスト
- AI-Lorenz: A physics-data-driven framework for black-box and gray-box
identification of chaotic systems with symbolic regression [2.07180164747172]
複雑な動的挙動をモデル化した数学的表現を学習するフレームワークを開発する。
私たちは、システムのダイナミクス、時間の変化率、モデル用語の欠如を学ぶために、小さなニューラルネットワークをトレーニングします。
これにより、動的挙動の将来的な進化を予測することができる。
論文 参考訳(メタデータ) (2023-12-21T18:58:41Z) - Data driven modeling for self-similar dynamics [1.0790314700764785]
本稿では,自己相似性を先行知識として組み込んだマルチスケールニューラルネットワークフレームワークを提案する。
決定論的ダイナミクスの場合、我々のフレームワークは力学が自己相似かどうかを識別できる。
本手法は,自己相似システムにおける電力法指数を同定する。
論文 参考訳(メタデータ) (2023-10-12T12:39:08Z) - Exploring Complex Dynamical Systems via Nonconvex Optimization [0.0]
我々は、機械学習のツールを用いた代替の最適化駆動アプローチを提案する。
本稿では, 複雑な化学反応ネットワークを組み込んだ, 完全最適化可能な反応拡散モデルに適用する。
これにより、パターン形成、散逸を最大化する非平衡状態、複製のような動的構造を含む、新しい状態と振舞いを体系的に同定することができる。
論文 参考訳(メタデータ) (2023-01-03T01:35:39Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
論文 参考訳(メタデータ) (2022-05-04T21:33:56Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
有限非線形力学系を無限線型力学系(埋め込み)にマッピングする方法を述べる。
次に、有限線型系 (truncation) による結果の無限線型系を近似するアプローチを検討する。
論文 参考訳(メタデータ) (2020-12-12T00:01:10Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
本稿では,大規模シミュレーションをブリッジし,注文モデルを削減し,実効ダイナミクスを学習するシステムフレームワークを提案する。
LEDは複雑なシステムの正確な予測に新しい強力なモダリティを提供する。
LEDは化学から流体力学に至るまでのシステムに適用でき、計算の労力を最大2桁まで削減できる。
論文 参考訳(メタデータ) (2020-06-24T02:35:51Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。