論文の概要: Accelerating Quantum Eigensolver Algorithms With Machine Learning
- arxiv url: http://arxiv.org/abs/2409.13587v1
- Date: Fri, 20 Sep 2024 15:41:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:30:58.039995
- Title: Accelerating Quantum Eigensolver Algorithms With Machine Learning
- Title(参考訳): 機械学習による量子固有解アルゴリズムの高速化
- Authors: Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, Connor Lenihan,
- Abstract要約: NISQデバイス上でのハミルトン基底状態エネルギー計算の高速化について検討する。
探索に基づく手法と機械学習を併用して量子アルゴリズムの高速化を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters.
- Abstract(参考訳): 本稿では,NISQデバイス上でのハミルトン基底状態エネルギー計算の高速化について検討する。
本稿では,量子固有解法を応用した量子アルゴリズムの高速化を機械学習と併用して提案する。
我々は、XGBoostのPythonレグレシタを使用して、最大16キュービットのシステムから古典的にマイニングされたデータに関する2つの小さなモデルを訓練した。
Eigensolverのハイパーパラメータを最適化することにより,20ビット,24ビット,28ビットシステムに対する予備的アプローチを評価した。
これらのモデルはハイパーパラメータ値を予測し、28量子ビットシステムでのテストでは0.13\%-0.15\%エラーを減少させる。
しかし,20量子ビット系と24量子ビット系では決定的な結果が得られず,ハミルトン特性に基づくトレーニングデータのさらなる検討が提案されている。
今後の研究では、機械学習モデルをトレーニングして、ハイパーパラメータを超えて量子アルゴリズムの実行の他の側面やサブルーチンを最適化する予定です。
関連論文リスト
- Memory-Augmented Quantum Reservoir Computing [0.0]
本稿では、量子計測の古典的後処理を通じてメモリを実装するハイブリッド量子古典的アプローチを提案する。
我々は、完全に連結されたIsingモデルとRydberg原子配列の2つの物理プラットフォーム上でモデルをテストした。
論文 参考訳(メタデータ) (2024-09-15T22:44:09Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
このアルゴリズムは古典的なハードウェア上で動作し、浅い正確な量子回路を見つける。
すべての回路は、適切なCPU時間と控えめなメモリ要求下で高い状態忠実性を達成する。
論文 参考訳(メタデータ) (2024-08-22T17:48:53Z) - Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms [48.869199703062606]
量子多体物理学における基本的な問題は、局所ハミルトニアンの基底状態を見つけることである。
基底状態特性を学習するためのシステムサイズ$n$とは無関係に,一定のサンプル複雑性を実現する2つのアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-28T18:00:32Z) - Training Multi-layer Neural Networks on Ising Machine [41.95720316032297]
本稿では,量子化ニューラルネットワーク(QNN)を学習するためのIsing学習アルゴリズムを提案する。
私たちが知る限りでは、Isingマシン上で多層フィードフォワードネットワークをトレーニングする最初のアルゴリズムである。
論文 参考訳(メタデータ) (2023-11-06T04:09:15Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - QBoost for regression problems: solving partial differential equations [0.0]
ハイブリッドアルゴリズムは、必要なキュービット数において、良好な精度と良好なスケーリングで偏微分方程式の解を求めることができる。
古典的な部分は、機械学習を用いて偏微分方程式を解くことができる複数の回帰器を訓練することによって構成される。
量子部分は、回帰問題を解くためにQBoostアルゴリズムを適用することで構成される。
論文 参考訳(メタデータ) (2021-08-30T16:13:04Z) - Robustly learning the Hamiltonian dynamics of a superconducting quantum processor [0.5564835829075486]
超伝導量子ビットアナログ量子シミュレータにおけるボソニック励起のフリーハミルトニアンパラメータを強く推定する。
この結果は、動的量子シミュレーションの正確な実装を構成する。
論文 参考訳(メタデータ) (2021-08-18T18:01:01Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Adiabatic Quantum Linear Regression [0.0]
本稿では,線形回帰モデルをトレーニングするための断熱的量子コンピューティング手法を提案する。
我々の分析によると、量子アプローチは、より大きなデータセットに対する古典的なアプローチよりも最大2.8倍のスピードアップを達成した。
論文 参考訳(メタデータ) (2020-08-05T20:40:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。