Enhancing Pedestrian Trajectory Prediction with Crowd Trip Information
- URL: http://arxiv.org/abs/2409.15224v1
- Date: Mon, 23 Sep 2024 17:11:31 GMT
- Title: Enhancing Pedestrian Trajectory Prediction with Crowd Trip Information
- Authors: Rei Tamaru, Pei Li, Bin Ran,
- Abstract summary: Accurately predicting pedestrian trajectories requires a deep understanding of individual behaviors, social interactions, and road environments.
We propose a novel approach incorporating trip information as a new modality into pedestrian trajectory models.
By exploring crowd behavior within the road network, our approach shows great promise in improving pedestrian safety through accurate trajectory predictions.
- Score: 17.09138102827048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian trajectory prediction is essential for various applications in active traffic management, urban planning, traffic control, crowd management, and autonomous driving, aiming to enhance traffic safety and efficiency. Accurately predicting pedestrian trajectories requires a deep understanding of individual behaviors, social interactions, and road environments. Existing studies have developed various models to capture the influence of social interactions and road conditions on pedestrian trajectories. However, these approaches are limited by the lack of a comprehensive view of social interactions and road environments. To address these limitations and enhance the accuracy of pedestrian trajectory prediction, we propose a novel approach incorporating trip information as a new modality into pedestrian trajectory models. We propose RNTransformer, a generic model that utilizes crowd trip information to capture global information on social interactions. We incorporated RNTransformer with various socially aware local pedestrian trajectory prediction models to demonstrate its performance. Specifically, by leveraging a pre-trained RNTransformer when training different pedestrian trajectory prediction models, we observed improvements in performance metrics: a 1.3/2.2% enhancement in ADE/FDE on Social-LSTM, a 6.5/28.4% improvement on Social-STGCNN, and an 8.6/4.3% improvement on S-Implicit. Evaluation results demonstrate that RNTransformer significantly enhances the accuracy of various pedestrian trajectory prediction models across multiple datasets. Further investigation reveals that the RNTransformer effectively guides local models to more accurate directions due to the consideration of global information. By exploring crowd behavior within the road network, our approach shows great promise in improving pedestrian safety through accurate trajectory predictions.
Related papers
- Pedestrian Trajectory Prediction Based on Social Interactions Learning With Random Weights [23.95745936419479]
Existing methods for modeling pedestrian social interactions rely on pre-defined rules, struggling to capture non-explicit social interactions.
We propose a novel framework named DTGAN, which extends the application of Generative Adversarial Networks (GANs) to graph sequence data.
Our proposed DTGAN achieves superior performance and is well able to understand pedestrians' intentions.
arXiv Detail & Related papers (2025-01-13T21:45:01Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.
Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.
This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles.
Recent deep learning-based prediction approaches mainly utilize information like trajectory history and interactions between pedestrians.
This paper proposes a graph transformer structure to improve prediction performance.
arXiv Detail & Related papers (2024-01-10T01:50:29Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
arXiv Detail & Related papers (2021-12-13T13:08:04Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
Forecasting human trajectories in complex dynamic environments plays a critical role in autonomous vehicles and intelligent robots.
Most existing methods learn to predict future trajectories by behavior clues from history trajectories and interaction clues from environments.
We propose a counterfactual analysis method for human trajectory prediction to investigate the causality between the predicted trajectories and input clues.
arXiv Detail & Related papers (2021-07-29T17:41:34Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Trajectory Prediction in Autonomous Driving with a Lane Heading
Auxiliary Loss [1.1470070927586014]
We propose a loss function which enhances trajectory prediction models by enforcing expected driving rules on all predicted modes.
Our contribution to trajectory prediction is twofold; we propose a new metric which addresses failure cases of the off-road rate metric.
We then use this auxiliary loss to extend the the standard multiple trajectory prediction (MTP) and MultiPath models.
arXiv Detail & Related papers (2020-11-12T22:51:25Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.