論文の概要: A SSM is Polymerized from Multivariate Time Series
- arxiv url: http://arxiv.org/abs/2409.20310v1
- Date: Mon, 30 Sep 2024 14:10:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 10:12:47.488163
- Title: A SSM is Polymerized from Multivariate Time Series
- Title(参考訳): SSMは多変量時系列から重合される
- Authors: Haixiang Wu,
- Abstract要約: MTS予測の新しい手法であるPoly-Mambaを開発した。
チャネル間の単純な線形関係について,Linear Channel Mixing (LCM) を提案し,異なるチャネルに対して適応的にCDTパターンを生成する。
6つの実世界のデータセットの実験では、Poly-MambaがSOTA法より優れていることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For multivariate time series (MTS) tasks, previous state space models (SSMs) followed the modeling paradigm of Transformer-based methods. However, none of them explicitly model the complex dependencies of MTS: the Channel Dependency variations with Time (CDT). In view of this, we delve into the derivation of SSM, which involves approximating continuously updated functions by orthogonal function bases. We then develop Poly-Mamba, a novel method for MTS forecasting. Its core concept is to expand the original orthogonal function basis space into a multivariate orthogonal function space containing variable mixing terms, and make a projection on this space so as to explicitly describe the CDT by weighted coefficients. In Poly-Mamba, we propose the Multivariate Orthogonal Polynomial Approximation (MOPA) as a simplified implementation of this concept. For the simple linear relationship between channels, we propose Linear Channel Mixing (LCM) and generate CDT patterns adaptively for different channels through a proposed Order Combining method. Experiments on six real-world datasets demonstrate that Poly-Mamba outperforms the SOTA methods, especially when dealing with datasets having a large number of channels and complex correlations. The codes and log files will be released at: https://github.com/Joeland4/Poly-Mamba.
- Abstract(参考訳): 多変量時系列(MTS)タスクでは、以前の状態空間モデル(SSM)はTransformerベースの手法のモデリングパラダイムに従った。
しかし、いずれもMSSの複雑な依存関係を明示的にモデル化するものではない:Channel Dependency variation with Time (CDT)である。
この観点から、直交関数基底による継続的更新関数の近似を含むSSMの導出を掘り下げる。
MTS予測の新しい手法であるPoly-Mambaを開発した。
その中心となる概念は、元の直交関数基底空間を可変混合項を含む多変数直交関数空間に拡張し、重み付き係数でCDTを明示的に記述するために、この空間上に射影することである。
ポリマンバでは,多変数直交多項式近似 (MOPA) をこの概念の簡易な実装として提案する。
チャネル間の単純な線形関係について,Linear Channel Mixing (LCM) を提案し,提案手法により異なるチャネルに対して適応的にCDTパターンを生成する。
6つの実世界のデータセットの実験では、Poly-MambaはSOTAメソッドよりも優れており、特に多数のチャネルと複雑な相関を持つデータセットを扱う場合である。
コードとログファイルは、https://github.com/Joeland4/Poly-Mamba.comでリリースされる。
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
時系列予測(TSF)のための新しい適応型マルチスケール分解(AMD)フレームワークを提案する。
我々のフレームワークは時系列を複数のスケールで異なる時間パターンに分解し、MDM(Multi-Scale Decomposable Mixing)ブロックを活用する。
提案手法は,時間依存性とチャネル依存性の両方を効果的にモデル化し,マルチスケールデータ統合を改良するために自己相関を利用する。
論文 参考訳(メタデータ) (2024-06-06T05:27:33Z) - SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion [59.96233305733875]
時系列予測は、金融、交通管理、エネルギー、医療など様々な分野で重要な役割を果たしている。
いくつかの方法は、注意やミキサーのようなメカニズムを利用して、チャネル相関をキャプチャすることでこの問題に対処する。
本稿では,効率的なモデルであるSOFTS(Series-cOre Fused Time Series forecaster)を提案する。
論文 参考訳(メタデータ) (2024-04-22T14:06:35Z) - CATS: Enhancing Multivariate Time Series Forecasting by Constructing
Auxiliary Time Series as Exogenous Variables [9.95711569148527]
本稿では,2次元時間・コンテキストアテンション機構のように機能する補助時間系列(CATS)を構築する手法を提案する。
基本2層をコア予測器として用いながら、CATSは最先端を達成し、従来の多変量モデルと比較して複雑性とパラメータを著しく低減する。
論文 参考訳(メタデータ) (2024-03-04T01:52:40Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - MTHetGNN: A Heterogeneous Graph Embedding Framework for Multivariate
Time Series Forecasting [4.8274015390665195]
我々は、異種グラフニューラルネットワーク(MTHetGNN)による多変量時系列予測と呼ばれる新しいエンドツーエンドディープラーニングモデルを提案する。
変数間の複雑な関係を特徴付けるため、MTHetGNNでは、各変数をグラフノードと見なす関係埋め込みモジュールを設計する。
時系列の特徴抽出に時間的埋め込みモジュールを導入し、知覚スケールの異なる畳み込みニューラルネットワーク(CNN)フィルタを含む。
論文 参考訳(メタデータ) (2020-08-19T18:21:22Z) - Dual Stochastic Natural Gradient Descent and convergence of interior
half-space gradient approximations [0.0]
多項ロジスティック回帰(MLR)は統計学や機械学習で広く使われている。
勾配降下(SGD)は、ビッグデータシナリオにおけるMLRモデルのパラメータを決定する最も一般的な手法である。
論文 参考訳(メタデータ) (2020-01-19T00:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。