論文の概要: Satellite image classification with neural quantum kernels
- arxiv url: http://arxiv.org/abs/2409.20356v2
- Date: Tue, 04 Mar 2025 08:26:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 18:50:36.912507
- Title: Satellite image classification with neural quantum kernels
- Title(参考訳): ニューラル量子カーネルを用いた衛星画像分類
- Authors: Pablo Rodriguez-Grasa, Robert Farzan-Rodriguez, Gabriele Novelli, Yue Ban, Mikel Sanz,
- Abstract要約: 本稿では,量子機械学習技術を用いた衛星画像の分類手法を提案する。
我々は、ソーラーパネルを含む画像の分類に焦点をあて、複雑な現実世界の分類問題に対処する。
- 参考スコア(独自算出の注目度): 0.0699049312989311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving practical applications of quantum machine learning for real-world scenarios remains challenging despite significant theoretical progress. This paper proposes a novel approach for classifying satellite images, a task of particular relevance to the earth observation (EO) industry, using quantum machine learning techniques. Specifically, we focus on classifying images that contain solar panels, addressing a complex real-world classification problem. Our approach begins with classical pre-processing to reduce the dimensionality of the satellite image dataset. We then apply neural quantum kernels (NQKs)-quantum kernels derived from trained quantum neural networks (QNNs)-for classification. We evaluate several strategies within this framework, demonstrating results that are competitive with the best classical methods. Key findings include the robustness of or results and their scalability, with successful performance achieved up to 8 qubits.
- Abstract(参考訳): 量子機械学習の現実のシナリオに対する実践的な応用を達成することは、理論上の大きな進歩にもかかわらず、依然として困難である。
本稿では、量子機械学習技術を用いて、地球観測(EO)産業に特に関連する課題である衛星画像の分類手法を提案する。
具体的には、ソーラーパネルを含む画像の分類に焦点をあて、複雑な現実世界の分類問題に対処する。
我々のアプローチは、衛星画像データセットの次元性を減らすために、古典的な前処理から始まります。
次に、トレーニングされた量子ニューラルネットワーク(QNN)から派生したニューラルネットワーク(NQK)量子カーネルを分類に適用する。
このフレームワーク内のいくつかの戦略を評価し、最も優れた古典的手法と競合する結果を示す。
主な発見は、結果の堅牢性とスケーラビリティであり、パフォーマンスは最大8キュービットまで達成されている。
関連論文リスト
- Measurement-based quantum convolutional neural network for deep learning [7.689125776844024]
本稿では,クラスタ状態を利用して量子畳み込みニューラルネットワーク(QCNN)を実装するための代替手法を提案する。
システム全体の安定化は、複雑な制御を避けることで容易である。
クラスター状態を測定することによって量子データと古典データの両方を学習できるという数値的な証拠を提供する。
論文 参考訳(メタデータ) (2024-12-11T08:55:07Z) - Benefiting from Quantum? A Comparative Study of Q-Seg, Quantum-Inspired Techniques, and U-Net for Crack Segmentation [41.01256771536732]
本研究は, クラックセグメンテーションの古典モデルと比較して, 量子および量子に着想を得た手法の性能を評価する。
以上の結果から,量子インスパイアされた量子法と量子法は,特に複雑なクラックパターンに対して,画像セグメンテーションに有望な代替手段を提供し,近未来の応用に応用できることが示唆された。
論文 参考訳(メタデータ) (2024-10-14T16:51:59Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Training embedding quantum kernels with data re-uploading quantum neural
networks [0.0]
カーネルメソッドは機械学習において重要な役割を担い、EQK(Embeding Quantum Kernels)は非常に有望なパフォーマンスを示している。
タスクに対して最適な$q$-qubit EQKを特定するために,データ再アップロードに基づく$p$-qubit Quantum Neural Network (QNN)を提案する。
論文 参考訳(メタデータ) (2024-01-09T16:08:32Z) - A Survey of Classical And Quantum Sequence Models [3.442372522693843]
本稿では,古典的自己アテンションモデルとその量子モデルの比較分析を行う。
我々はこれらの既存手法の重要代表集合を再実装し、量子自己アテンションを用いた画像分類アプローチを適用して量子ハイブリッドトランスを作成する。
また、異なる符号化手法を探求し、位置符号化を量子自己認識ニューラルネットワークに導入することにより、テキストと画像の分類実験における精度の向上とより高速な収束を実現する。
論文 参考訳(メタデータ) (2023-12-15T22:21:26Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
量子ニューラルネットワーク(QNN)と量子カーネルは、量子機械学習の領域において顕著な存在である。
我々は、QNNと量子カーネルのトレーニングを高速化することを目的とした、コアセット選択という統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T08:59:46Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - 3D Scalable Quantum Convolutional Neural Networks for Point Cloud Data
Processing in Classification Applications [10.90994913062223]
量子畳み込みニューラルネットワーク(QCNN)は、分類アプリケーションにおけるポイントクラウドデータ処理のために提案される。
分類アプリケーションにおけるポイントクラウドデータ処理のための3DスケーラブルQCNN(sQCNN-3D)を提案する。
論文 参考訳(メタデータ) (2022-10-18T10:14:03Z) - Classification of NEQR Processed Classical Images using Quantum Neural
Networks (QNN) [0.0]
この研究は、著者による以前の研究に基づいており、NEQR(NEQR)を用いた画像分類のためのQNNに対処している。
NEQRモデル回路を構築し、同じデータを前処理し、画像をQNNに入力する。
その結果,NEQRによるQNN性能がNEQRを使わずにQNNの性能を上回った際の限界改善(約5.0%)が認められた。
論文 参考訳(メタデータ) (2022-03-29T08:05:53Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - A Quantum Convolutional Neural Network on NISQ Devices [0.9831489366502298]
本稿では,畳み込みニューラルネットワークに着想を得た量子畳み込みニューラルネットワークを提案する。
我々のモデルは、画像認識タスクの特定のノイズに対して堅牢である。
これは、ビッグデータ時代の情報を処理するために、量子パワーを活用する可能性を開く。
論文 参考訳(メタデータ) (2021-04-14T15:07:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Experimental realization of a quantum image classifier via
tensor-network-based machine learning [4.030017427802459]
我々は,フォトニックキュービットを用いた実写画像の分類に成功していることを示す。
我々は手書きゼロと手書きゼロのバイナリ分類に焦点をあて、その特徴をテンソル-ネットワーク表現にキャストする。
テンソル積表現における特徴の効率的なマルチキュービット符号化にスケールすることができる。
論文 参考訳(メタデータ) (2020-03-19T03:26:27Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。