論文の概要: From Optimization to Sampling via Lyapunov Potentials
- arxiv url: http://arxiv.org/abs/2410.02979v1
- Date: Thu, 3 Oct 2024 20:40:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:45:27.589994
- Title: From Optimization to Sampling via Lyapunov Potentials
- Title(参考訳): リアプノフポテンシャルによる最適化からサンプリングへ
- Authors: August Y. Chen, Karthik Sridharan,
- Abstract要約: 本稿では,Langevin Dynamics を用いた高次元分布からのサンプリング問題について検討する。
非対数凹凸密度の新しい自然クラスと興味深いクラスをサンプルとして示す。
- 参考スコア(独自算出の注目度): 8.687754908398079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of sampling from high-dimensional distributions using Langevin Dynamics, a natural and popular variant of Gradient Descent where at each step, appropriately scaled Gaussian noise is added. The similarities between Langevin Dynamics and Gradient Descent leads to the natural question: if the distribution's log-density can be optimized from all initializations via Gradient Descent, given oracle access to the gradients, can we sample from the distribution using Langevin Dynamics? We answer this question in the affirmative, at low but appropriate temperature levels natural in the context of both optimization and real-world applications. As a corollary, we show we can sample from several new natural and interesting classes of non-log-concave densities, an important setting where we have relatively few examples.
- Abstract(参考訳): グラディエントDescentの自然・ポピュラーな変種であるLangevin Dynamicsを用いて,高次元分布からのサンプリング問題について検討し,各ステップで適切なスケールのガウス雑音を付加する。
Langevin Dynamics と Gradient Descent の類似性は自然問題に繋がる: もし分布の対数密度が、勾配へのオラクルアクセスを与えられた Gradient Descent を通じてすべての初期化から最適化できるなら、Langevin Dynamics を使って分布からサンプリングできるだろうか?
我々は、最適化と実世界の両方の応用の文脈で自然に、低いが適切な温度で、肯定的に、この疑問に答える。
結論として、我々は、比較的少数の例がある重要な設定である、非ログ凹凸密度の新しい自然クラスと興味深いクラスからサンプルを採取できることを示します。
関連論文リスト
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
勾配アルゴリズムは線形系を解くのに有効な方法である。
最適値に収束しない場合であっても,勾配降下は正確な予測を導出することを示す。
実験的に、勾配降下は十分に大規模または不条件の回帰タスクにおいて最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-06-20T15:07:37Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
勾配ランゲヴィン・ダイナミクスは非エプス最適化問題を解くための最も基本的なアルゴリズムの1つである。
本稿では、このタイプの2つの変種、すなわち、分散還元ランジュバンダイナミクスと再帰勾配ランジュバンダイナミクスを示す。
論文 参考訳(メタデータ) (2022-03-30T11:39:00Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
サンプルごとのHessian-vector積と勾配を用いて、自己チューニングの二次構造を構築する。
モデルに基づく手続きが雑音勾配設定に収束することを証明する。
これは自己チューニング二次体を構築するための興味深いステップである。
論文 参考訳(メタデータ) (2020-11-09T22:07:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。