論文の概要: Generative AI Policies under the Microscope: How CS Conferences Are Navigating the New Frontier in Scholarly Writing
- arxiv url: http://arxiv.org/abs/2410.11977v2
- Date: Wed, 08 Jan 2025 19:17:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 15:31:16.922637
- Title: Generative AI Policies under the Microscope: How CS Conferences Are Navigating the New Frontier in Scholarly Writing
- Title(参考訳): 顕微鏡下でのジェネレーティブAIポリシー:CSカンファレンスが学術的執筆における新たなフロンティアをいかに導くか
- Authors: Mahjabin Nahar, Sian Lee, Becky Guillen, Dongwon Lee,
- Abstract要約: 本稿では,コンピュータサイエンス会議における生成型AI政策の現状について考察する。
政策適用のガイドラインを提供する。
生成AIはコンピュータ科学の未来において重要な役割を果たすと結論付けている。
- 参考スコア(独自算出の注目度): 5.177873730122791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the current state of generative AI policies of computer science conferences and offers guidelines for policy adoption.
- Abstract(参考訳): 本稿では,コンピュータサイエンス会議における生成型AI政策の現状を考察し,政策導入のガイドラインを提供する。
関連論文リスト
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Navigating Ethical Challenges in Generative AI-Enhanced Research: The ETHICAL Framework for Responsible Generative AI Use [0.0]
生成人工知能(GenAI)の急速な普及は、機会と倫理的課題の両方を提示する。
本稿では、研究におけるGenAIの責任を負うための実践的ガイドであるETHICALフレームワークを開発する。
論文 参考訳(メタデータ) (2024-12-11T05:49:11Z) - Future of Information Retrieval Research in the Age of Generative AI [61.56371468069577]
情報検索(IR)の急速に発展する分野では、大規模言語モデル(LLM)のような生成AI技術の統合が、情報の検索やインタラクションの方法を変えつつある。
このパラダイムシフトを認識したビジョンワークショップが2024年7月に開催され、生成AI時代のIRの将来について議論した。
本報告は、潜在的に重要な研究トピックとしての議論の要約を含み、学術、産業実践家、機関、評価キャンペーン、資金提供機関の推薦リストを含む。
論文 参考訳(メタデータ) (2024-12-03T00:01:48Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
コンピュータ学生のGenAI利用と認識に関する先行研究は限られている。
私たちは、小さなエンジニアリングに焦点を当てたR1大学で、すべてのコンピュータサイエンス専攻を調査しました。
我々は,GenAIと教育に関する新たな議論に対する知見の影響について論じる。
論文 参考訳(メタデータ) (2024-11-17T20:17:47Z) - Analysis of Generative AI Policies in Computing Course Syllabi [3.7869332128069773]
2022年にChatGPTがリリースされて以来、ジェネレーティブAI(GenAI)は、全米の高等教育コンピューティング教室でますます使われている。
我々は、米国の54のR1機関から98のコンピューティングコースシラビを収集し、採用したGenAIポリシーと周囲の談話を調査した。
分析の結果,1)GenAI使用に関する指示は,コースの学術的整合性政策の一部であり,2)GenAI使用を禁止あるいは制限するシラビが多かった。
論文 参考訳(メタデータ) (2024-10-29T17:34:10Z) - SelfBC: Self Behavior Cloning for Offline Reinforcement Learning [14.573290839055316]
本研究では,これまでに学習したポリシーの指数的移動平均によって生成されたサンプルに対して,学習したポリシーを制約する新しい動的ポリシー制約を提案する。
我々のアプローチは、ほぼ単調に改善された参照ポリシーをもたらす。
論文 参考訳(メタデータ) (2024-08-04T23:23:48Z) - A Systematic Review of Generative AI for Teaching and Learning Practice [0.37282630026096586]
高等教育におけるGenAIシステムの利用に関するガイドラインは合意されていない。
HEにおける学際的・多次元的な研究は、共同研究を通じて必要である。
論文 参考訳(メタデータ) (2024-06-13T18:16:27Z) - Securing the Future of GenAI: Policy and Technology [50.586585729683776]
政府はGenAIを規制し、イノベーションと安全性のバランスをとるという課題に、世界中で不満を抱いている。
Google、ウィスコンシン大学、マディソン大学、スタンフォード大学が共同で行ったワークショップは、GenAIのポリシーとテクノロジーのギャップを埋めることを目的としていた。
本稿では,技術進歩を妨げることなく,どのように規制を設計できるか,といった問題に対処するワークショップの議論を要約する。
論文 参考訳(メタデータ) (2024-05-21T20:30:01Z) - From Guidelines to Governance: A Study of AI Policies in Education [1.9659095632676098]
本研究は,新興技術に関する政策状況を調べるための調査手法を用いている。
ほとんどの機関は、ChatGPTのようなAIツールの倫理的展開のための特別なガイドラインを欠いている。
高校は高等教育機関よりも政策に取り組む傾向が低い。
論文 参考訳(メタデータ) (2024-03-22T20:07:58Z) - Generative AI in Higher Education: Seeing ChatGPT Through Universities' Policies, Resources, and Guidelines [11.470910427306569]
本研究は、GenAIの利用に関して、米国トップクラスの大学が確立した学術政策とガイドラインを分析した。
その結果,これらの大学の大部分は,GenAIに対するオープンだが慎重なアプローチを採用していることが示唆された。
発見は、教育実践における教育者に4つの実践的意味を与える。
論文 参考訳(メタデータ) (2023-12-08T18:33:11Z) - Perspectives on the State and Future of Deep Learning -- 2023 [237.1458929375047]
このシリーズの目標は、今日の機械学習の分野における意見と問題を、時間とともに変化するにつれて記録することである。
計画では、この調査をAIの特異点であるペーパークリップ・フレンチ駆動の土曜まで定期的に実施し、トピックに関する質問のリストを更新し、各エディションの新たなコミュニティメンバーにインタビューする。
論文 参考訳(メタデータ) (2023-12-07T19:58:37Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
本稿では,GenAIによる双対ジレンマに関するGoogleのワークショップの成果を報告する。
GenAIはまた、攻撃者が新しい攻撃を生成し、既存の攻撃のベロシティと有効性を高めるためにも使用できる。
この話題について,コミュニティの短期的,長期的目標について論じる。
論文 参考訳(メタデータ) (2023-08-28T18:51:09Z) - Synthesizing Programmatic Policies with Actor-Critic Algorithms and ReLU
Networks [20.2777559515384]
PIRL(Programmaticly Interpretable Reinforcement Learning)は、人間が読めるコンピュータプログラムのポリシーを符号化する。
本稿では,プログラムポリシーを符号化する言語によって,PIRL固有のアルゴリズムは不要であることを示す。
我々は、ReLUニューラルネットワークと斜め決定木との接続を用いて、アクター批判アルゴリズムで学んだポリシーをプログラムポリシーに変換する。
論文 参考訳(メタデータ) (2023-08-04T22:17:32Z) - Policy Expansion for Bridging Offline-to-Online Reinforcement Learning [20.24902196844508]
本稿では,この課題に対する政策拡張スキームを紹介する。
オフラインポリシーを学んだ後、ポリシーセットでひとつの候補ポリシーとして使用します。
そして、さらなる学習に責任を持つ別の政策で政策を拡大します。
論文 参考訳(メタデータ) (2023-02-02T08:25:12Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Memory-Constrained Policy Optimization [59.63021433336966]
政策勾配強化学習のための制約付き最適化手法を提案する。
我々は、過去の幅広い政策を表す別の仮想ポリシーの構築を通じて、第2の信頼領域を形成します。
そして、我々は、新しいポリシーをバーチャルポリシーに近づき続けるよう強制する。
論文 参考訳(メタデータ) (2022-04-20T08:50:23Z) - On-Line Policy Iteration for Infinite Horizon Dynamic Programming [0.0]
有限状態無限地平線割引動的プログラミングのためのオンラインポリシー反復(PI)アルゴリズムを提案する。
このアルゴリズムは有限個の段階に収束し、局所最適ポリシーの一種となる。
また、価値とポリシーを近似したオンラインPIアルゴリズムにも適している。
論文 参考訳(メタデータ) (2021-06-01T19:50:22Z) - MPLP: Learning a Message Passing Learning Protocol [63.948465205530916]
人工ニューラルネットワークの重みを学習する新しい手法として,メッセージパッシング学習プロトコル(MPLP)を提案する。
ANNで発生したすべての操作を独立したエージェントとして抽象化する。
各エージェントは、他のエージェントからやってくる多次元メッセージを取り込み、内部状態を更新し、近隣エージェントに渡される多次元メッセージを生成する責任がある。
論文 参考訳(メタデータ) (2020-07-02T09:03:14Z) - Non-Stationary Off-Policy Optimization [50.41335279896062]
本研究では,時間的空間的帯域幅の非政治最適化の新たな課題について検討する。
オフライン学習フェーズでは、ログ化されたデータをカテゴリの潜在状態に分割し、各状態に対してほぼ最適のサブポリシーを学ぶ。
オンラインデプロイメントの段階では、学習したサブ政治をそのパフォーマンスに基づいて順応的に切り替える。
論文 参考訳(メタデータ) (2020-06-15T09:16:09Z) - Deep Conversational Recommender Systems: A New Frontier for
Goal-Oriented Dialogue Systems [54.06971074217952]
Conversational Recommender System (CRS)は対話型対話を通じてユーザの好みを学習し、モデル化する。
ディープラーニングアプローチはCRSに適用され、実りある結果を生み出した。
論文 参考訳(メタデータ) (2020-04-28T02:20:42Z) - Policy Evaluation Networks [50.53250641051648]
我々は,簡潔な埋め込みにおいて重要なポリシー情報を保持できる,スケーラブルで差別化可能なフィンガープリント機構を導入する。
実験の結果、これらの3つの要素を組み合わせることで、トレーニングデータを生成するものよりも優れたポリシーを作成できることが示された。
論文 参考訳(メタデータ) (2020-02-26T23:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。