論文の概要: Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
- arxiv url: http://arxiv.org/abs/2410.12779v1
- Date: Wed, 16 Oct 2024 17:53:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:25.483078
- Title: Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
- Title(参考訳): ワープリーマン計量学習のための幾何学的自動エンコーダとデータマニフォールド生成モデル
- Authors: Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Chen Liu, Guillaume Huguet, Guy Wolf, Ian Adelstein, Tim G. J. Rudner, Smita Krishnaswamy,
- Abstract要約: 本稿では,多様体学習と生成モデルを組み合わせた新しいフレームワークであるGeometry-Aware Generative Autoencoder (GAGA)を紹介する。
GAGAは、シミュレーションおよび実世界のデータセットにおける競合性能を示し、シングルセル集団レベルの軌道推定における最先端手法よりも30%改善されている。
- 参考スコア(独自算出の注目度): 18.156807299614503
- License:
- Abstract: Rapid growth of high-dimensional datasets in fields such as single-cell RNA sequencing and spatial genomics has led to unprecedented opportunities for scientific discovery, but it also presents unique computational and statistical challenges. Traditional methods struggle with geometry-aware data generation, interpolation along meaningful trajectories, and transporting populations via feasible paths. To address these issues, we introduce Geometry-Aware Generative Autoencoder (GAGA), a novel framework that combines extensible manifold learning with generative modeling. GAGA constructs a neural network embedding space that respects the intrinsic geometries discovered by manifold learning and learns a novel warped Riemannian metric on the data space. This warped metric is derived from both the points on the data manifold and negative samples off the manifold, allowing it to characterize a meaningful geometry across the entire latent space. Using this metric, GAGA can uniformly sample points on the manifold, generate points along geodesics, and interpolate between populations across the learned manifold. GAGA shows competitive performance in simulated and real world datasets, including a 30% improvement over the state-of-the-art methods in single-cell population-level trajectory inference.
- Abstract(参考訳): 単一細胞RNAシークエンシングや空間ゲノム学のような分野における高次元データセットの急速な成長は、科学的な発見に前例のない機会をもたらしたが、独自の計算と統計的な課題も提示している。
伝統的な方法では、幾何学的なデータ生成、意味のある軌道に沿った補間、および実現可能な経路を介して人口を輸送する。
これらの問題に対処するために,拡張可能な多様体学習と生成モデルを組み合わせた新しいフレームワークであるGeometry-Aware Generative Autoencoder (GAGA)を導入する。
GAGAは、多様体学習によって発見された固有測地を尊重するニューラルネットワーク埋め込み空間を構築し、データ空間に関する新しい歪んだリーマン計量を学ぶ。
この歪んだ計量は、データ多様体上の点と多様体の負のサンプルの両方から導かれ、潜在空間全体にわたって有意義な幾何学を特徴づけることができる。
この計量を用いて、GAGAは多様体上の一様に点をサンプリングし、測地線に沿って点を生成し、学習された多様体全体の集団間を補間することができる。
GAGAは、シミュレーションおよび実世界のデータセットにおける競合性能を示し、シングルセル集団レベルの軌道推定における最先端手法よりも30%改善されている。
関連論文リスト
- Score-based pullback Riemannian geometry [10.649159213723106]
本稿では,データ駆動型リーマン幾何学のフレームワークを提案する。
データサポートを通して高品質な測地学を作成し、データ多様体の固有次元を確実に推定する。
我々のフレームワークは、訓練中に等方性正規化を採用することで、自然に異方性正規化フローで使用することができる。
論文 参考訳(メタデータ) (2024-10-02T18:52:12Z) - (Deep) Generative Geodesics [57.635187092922976]
2つのデータポイント間の類似性を評価するために,新しい測定基準を導入する。
我々の計量は、生成距離と生成測地学の概念的定義に繋がる。
彼らの近似は、穏やかな条件下で真の値に収束することが証明されている。
論文 参考訳(メタデータ) (2024-07-15T21:14:02Z) - Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution [8.107199775668942]
Integrated Gradients (IG)は、ブラックボックス深層学習モデルの一般的な特徴属性法である。
我々は、IGに関連する2つの主要な課題に対処する。ノイズの多い特徴可視化の生成と、敵の帰属攻撃に対する脆弱性である。
提案手法は,データ多様体の内在的幾何とより密接に関連し,経路に基づく特徴属性の適応を伴う。
論文 参考訳(メタデータ) (2024-05-16T04:13:17Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
この研究の直感は、与えられたメッシュ間の幾何学的不整合を強力な自己認識機構で知覚することである。
本研究では,グローバルな幾何学的不整合に対する3次元構造的知覚能力を有する新しい幾何学コントラスト変換器を提案する。
本稿では, クロスデータセット3次元ポーズ伝達タスクのための半合成データセットとともに, 潜時等尺正則化モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-14T13:14:24Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
グラフ畳み込みネットワーク(GCN)はすでに、不規則なデータをモデル化する強力な能力を実証している。
本稿では,ポアンカー幾何学を用いて定義した空間時空間GCNアーキテクチャを提案する。
提案手法を,現在最大規模の2つの3次元データセット上で評価する。
論文 参考訳(メタデータ) (2020-07-30T18:23:18Z) - Uniform Interpolation Constrained Geodesic Learning on Data Manifold [28.509561636926414]
学習された測地線とともに、2つのデータサンプル間で高品質なデータを生成することができる。
提案手法の有効性を実証するために, モデルの理論解析を行い, 画像翻訳を例に挙げる。
論文 参考訳(メタデータ) (2020-02-12T07:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。