論文の概要: Nearly query-optimal classical shadow estimation of unitary channels
- arxiv url: http://arxiv.org/abs/2410.14538v1
- Date: Fri, 18 Oct 2024 15:25:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:02.341441
- Title: Nearly query-optimal classical shadow estimation of unitary channels
- Title(参考訳): 単元チャネルの問合せ-最適古典影推定
- Authors: Zihao Li, Changhao Yi, You Zhou, Huangjun Zhu,
- Abstract要約: 古典的影推定は、量子状態と量子過程の物性を学習するための強力なツールである。
量子実験において未知のユニタリチャネルをクエリすることで、$mathcalU$の古典的な記述を学ぶことがゴールである。
我々のプロトコルは、アウト・オブ・タイム・オーダの相関子のような多くの非線形特性を同時に予測するためにも適用できる。
- 参考スコア(独自算出の注目度): 6.715668514390893
- License:
- Abstract: Classical shadow estimation (CSE) is a powerful tool for learning properties of quantum states and quantum processes. Here we consider the CSE task for quantum unitary channels. By querying an unknown unitary channel $\mathcal{U}$ multiple times in quantum experiments, the goal is to learn a classical description of $\mathcal{U}$ such that one can later use it to accurately predict many different linear properties of the channel, i.e., the expectation values of arbitrary observables measured on the output of $\mathcal{U}$ upon arbitrary input states. Based on collective measurements on multiple systems, we propose a query efficient protocol for this task, whose query complexity achieves a quadratic advantage over previous best approach for this problem, and almost saturates the information-theoretic lower bound. To enhance practicality, we also present a variant protocol using only single-copy measurements, which still offers better query performance than any previous protocols that do not use additional quantum memories. In addition to linear properties, our protocol can also be applied to simultaneously predict many non-linear properties such as out-of-time-ordered correlators. Given the importance of CSE, this work may represent a significant advance in the study of learning unitary channels.
- Abstract(参考訳): 古典的影推定(CSE)は、量子状態と量子過程の性質を学習するための強力なツールである。
ここでは、量子ユニタリチャネルのCSEタスクについて考察する。
量子実験において未知のユニタリチャネル $\mathcal{U}$ を複数回クエリすることで、任意の入力状態に基づいて $\mathcal{U}$ の出力で測定された任意の可観測物の期待値など、チャネルの多くの異なる線形特性を正確に予測するために $\mathcal{U}$ の古典的な記述を学ぶことがゴールである。
本稿では,複数のシステムの集合的測定に基づいて,クエリの複雑さが従来の最適手法に比べて2次的優位性を達成し,情報理論の下限をほぼ飽和させるような,問合せ効率のよいプロトコルを提案する。
実用性を高めるため、単一コピー計測のみを用いて、追加の量子メモリを使用しない他のどのプロトコルよりも優れたクエリ性能を提供する変種プロトコルも提案する。
また, 線形特性に加えて, 非線形特性の同時予測も可能である。
CSEの重要性を考えると、この研究はユニタリチャネルの学習において大きな進歩をもたらす可能性がある。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
我々はカーンズのSQオラクルとヴァリアントの弱い評価オラクルからインスピレーションを得ます。
評価クエリから学習するための非条件の下限を出力する,広範かつ直感的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-26T18:23:21Z) - Learning unitaries with quantum statistical queries [0.0]
量子統計クエリ(QSQ)からユニタリ演算子を学習するためのいくつかのアルゴリズムを提案する。
本手法は, 1つの量子統計的クエリを用いて, パウリ弦の部分集合上のユニタリのフーリエ質量を推定する新しい手法に基づく。
量子統計的クエリは,Choi-Jamiolkowski状態に対する分離可能な測定値と比較して,特定のタスクに対して指数関数的に大きなサンプル複雑性をもたらすことを示す。
論文 参考訳(メタデータ) (2023-10-03T17:56:07Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
変分量子アルゴリズム(VQA)は,LDA法とバランスの取れた精度で性能が向上したことを示す。
現在の量子コンピュータはノイズが多く、テストする量子ビットは少ないため、QML法の現在の量子的利点と潜在的な量子的優位性を実証することは困難である。
論文 参考訳(メタデータ) (2022-08-28T16:58:37Z) - Commutation simulator for open quantum dynamics [0.0]
時間依存密度作用素 $hatrho(t)$ の直接的性質を調べる革新的な方法を提案する。
可換関係の期待値と$hatrho(t)$の変化率を直接計算できる。
単一量子ビットの場合において、単純だが重要な例が示され、多くの量子ビットを用いた実用的な量子シミュレーション法の拡張について論じる。
論文 参考訳(メタデータ) (2022-06-01T16:03:43Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
証明者と検証者の間の「相互作用」は、検証可能性と実装のギャップを埋めることができる。
イオントラップ量子コンピュータを用いた対話型量子アドバンストプロトコルの最初の実装を実演する。
論文 参考訳(メタデータ) (2021-12-09T19:00:00Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。