論文の概要: Uncovering the Genetic Basis of Glioblastoma Heterogeneity through Multimodal Analysis of Whole Slide Images and RNA Sequencing Data
- arxiv url: http://arxiv.org/abs/2410.18710v1
- Date: Wed, 23 Oct 2024 07:55:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:43:32.122269
- Title: Uncovering the Genetic Basis of Glioblastoma Heterogeneity through Multimodal Analysis of Whole Slide Images and RNA Sequencing Data
- Title(参考訳): 全スライド画像とRNAシークエンシングデータのマルチモーダル解析によるGlioblastoma Heterogeneityの遺伝的基礎の解明
- Authors: Ahmad Berjaoui, Louis Roussel, Eduardo Hugo Sanchez, Elizabeth Cohen-Jonathan Moyal,
- Abstract要約: グリオ芽腫は、急速な進行と予後不良を特徴とする、非常に攻撃的な脳腫瘍である。
以上の結果より, グリオ芽腫に関連のある新規遺伝子が同定された。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License:
- Abstract: Glioblastoma is a highly aggressive form of brain cancer characterized by rapid progression and poor prognosis. Despite advances in treatment, the underlying genetic mechanisms driving this aggressiveness remain poorly understood. In this study, we employed multimodal deep learning approaches to investigate glioblastoma heterogeneity using joint image/RNA-seq analysis. Our results reveal novel genes associated with glioblastoma. By leveraging a combination of whole-slide images and RNA-seq, as well as introducing novel methods to encode RNA-seq data, we identified specific genetic profiles that may explain different patterns of glioblastoma progression. These findings provide new insights into the genetic mechanisms underlying glioblastoma heterogeneity and highlight potential targets for therapeutic intervention.
- Abstract(参考訳): グリオ芽腫は、急速な進行と予後不良を特徴とする、非常に攻撃的な脳腫瘍である。
治療の進歩にもかかわらず、この攻撃性を引き起こす根底にある遺伝子機構はいまだに理解されていない。
本研究では,複数モーダルな深層学習手法を用いて,関節画像/RNA-seq解析によるグリオブラスト腫の多様性について検討した。
以上の結果より, グリオ芽腫に関連のある新規遺伝子が同定された。
RNA-seqデータをエンコードする新しい手法の導入とともに、全スライディング画像とRNA-seqの組み合わせを活用することにより、グリオ芽腫進行の異なるパターンを説明できる特定の遺伝子プロファイルを同定した。
これらの知見は, グリオブラスト腫の遺伝子機構を解明し, 治療介入の可能性が示唆された。
関連論文リスト
- Precision Cancer Classification and Biomarker Identification from mRNA Gene Expression via Dimensionality Reduction and Explainable AI [0.9423257767158634]
本研究では,33種類の異なる癌とその対応する遺伝子群を正確に同定するための包括的パイプラインを提案する。
正規化と特徴選択技術を組み合わせて、データセットの次元性を効果的に削減する。
我々はExplainable AIを利用して、同定された癌特異的遺伝子の生物学的意義を解明する。
論文 参考訳(メタデータ) (2024-10-08T18:56:31Z) - Gene-Level Representation Learning via Interventional Style Transfer in Optical Pooled Screening [3.7038542578642715]
光プールスクリーニング(OPS)を用いて得られた遺伝的摂動細胞の画像から、遺伝子レベルの特徴表現を学習するためのスタイル変換アプローチを採用する。
本手法は,遺伝子機能に応じた遺伝子表現のクラスタリングにおける工学的特徴よりも優れ,潜伏する生物学的関係を明らかにするために有用であることを示す。
論文 参考訳(メタデータ) (2024-06-11T22:56:50Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward
precision medicine using MRI and a data-inclusive machine learning algorithm [3.2507684591996036]
Glioblastoma (GBM) は最も攻撃的で致命的なヒト癌の一つである。
バイオプシーは侵襲的であり、非侵襲的なMRIベースの機械学習(ML)モデルの開発を動機付けている。
我々は,MRIを用いて各GBM腫瘍の局所的遺伝的変化を予測するための新しいWeakly Supervised Ordinal Support Vector Machine (WSO-SVM)を提案する。
論文 参考訳(メタデータ) (2023-12-30T03:28:51Z) - Gene-MOE: A sparsely gated prognosis and classification framework
exploiting pan-cancer genomic information [13.57379781623848]
そこで本研究では, RNA-seq解析フレームワークであるGene-MOEについて紹介する。
Gene-MOEは、分析精度を高めるために、MOE層とアテンションエキスパート層の混合物のポテンシャルを利用する。
事前訓練を通じて33種類のがんからパンがん情報を統合することで、過度に適合する課題に対処する。
論文 参考訳(メタデータ) (2023-11-29T07:09:25Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGliomaは人工知能に基づく診断スクリーニングシステムである。
ディープグリオーマは、世界保健機関が成人型びまん性グリオーマ分類を定義するために使用する分子変化を予測することができる。
論文 参考訳(メタデータ) (2023-03-23T18:50:18Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Transcriptome-wide prediction of prostate cancer gene expression from
histopathology images using co-expression based convolutional neural networks [0.8874479658912061]
形態と遺伝子発現の関係を特異的にモデル化する新しい計算効率の高い手法を提案する。
前立腺癌におけるRNA塩基配列推定のためのCNNを用いた第1回トランスクリプトーム解析を行った。
論文 参考訳(メタデータ) (2021-04-19T13:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。